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1. Introduction 
 
    In the past few decades, the semiconductor industry has been a key contributor to our economy. The latest statistics 

from the Semiconductor Industry Association (SIA) indicate that global semiconductor industry sales totaled $556 

billion in 2021. In addition to the direct impact on the economy, the semiconductor industry is the key engine that 

powers all information technology fields, including personal computing, mobile computing, cloud computing, etc. and 

therefore has a much deeper and broader impact than expected at first sight on our modern economy.  

Our central argument is that advancing semiconductor technologies will enable more interesting applications, 

hence fostering an ecosystem with a market size that is tens of times bigger than the enabling semiconductor 

sector [1]. One concrete example (Figure 1) is the mobile computing industry: back in the early 2000s, mobile phones 

had already become commodities and were called feature phones. Although feature phones were almost ubiquitous, 

they possessed limited functions or applications and 90% of the compute power was dedicated to basic communication 

functions such as encoding and decoding. Since less than 10% of the available compute power was dedicated for 

application, this did not leave much room for many interesting applications. The whole market size of the mobile 

computing ecosystem was around $10 billion.   Then smart phones came to market and generated ever increasing 

demands for compute power in order to sustain an ever-increasing number of interesting mobile applications.  As 

demand increased, a single embedded chip evolved into complex mobile systems-on-chip consisting of multi-core 

CPUs, mobile GPUs, and mobile DSPs, along with extremely good power management systems. Today, the mobile 

computing ecosystem enjoys a market size of $800 billion. 
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Figure 1: evolution of mobile computing 

 

 

 
Figure 2: ecosystem vs semiconductor market size 

 

    As the personal computing market and the mobile computing market have matured, let us examine the relation 

between the ecosystem market size and the semiconductor market size (Figure 2) for both personal computing 

and mobile computing. Today, the mobile processor market size is $35 billion, the mobile phone market size is $270 

billion, while the mobile computing ecosystem market size is $800 billion, 23 times the size of the mobile processor 

market.  The personal computing processor market size is $55 billion, the personal computer market size is $150 

billion, and the personal computing ecosystem market size is $900 billion, 16 times the size of the personal computing 

processor market. Thus, as a computing era matures, the semiconductor sector should be capable of supporting 

an ecosystem 15 to 25 times its market size.  

    Next, let us examine the current status of autonomous machine computing (AMC) and consider the steps required 

to initiate the virtuous circle of growing an AMC ecosystem: the current AMC compute system designs spend 50% of 

autonomous machine compute power for perception, 20% of compute power for localization, 25% of compute power 

for planning, leaving merely 5% for applications. This is very similar to the situation in feature phones in the early 

stage of the mobile computing era. With this distribution of compute power, it is impossible to have the autonomous 

machines perform intelligent tasks, which means that, currently, the AMC ecosystem is virtually non-existent.   

What we aim for is that the basic operations including perception, localization, and planning should be done in 

hardware and consume less than 20% of compute power, thus leaving 80% of compute power for intelligent 

applications.  It is the only way to unlocking the imagination of software developers and enabling an ecosystem 

for AMC applications. For instance, one interesting application of AMC is the autonomous mobile clinics [2], which 

will be capable of solving the healthcare access and equity problem by delivering healthcare services to the patient's 
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doorstep by order of the patient.  Similarly, many other interesting autonomous machine applications can be defined 

to expand the AMC ecosystem.  

In this white paper, we examine three key research directions for autonomous machine computing, including 

Defining Architectures for Autonomous Machine Computing (Section 2), Programming Autonomous Machines with 

Only A Few Lines of Code (Section 3), and Linking Systems and Technologies (Section 4). 

 

2. Defining Architectures for Autonomous Machine Computing 
 

To fully realize the economic potential of the AMC ecosystem detailed in section 1, the key technical challenge is 

to enable efficient programming of AMC applications, thus an abstraction between the application programming layer 

and the underlying compute substrates is imperative. This part aims to define a common computer architecture 

for AMC and to popularize it to become a global standard, similar to the ARM architecture in the mobile 

computing era.  In the past five years, we have explored and identified three promising architecture candidates, 

including dataflow accelerator architecture (DAA), factor graph architecture (FGA), and learning-based architecture 

(LBA).  We plan to leverage on the advantages of each architecture proposal to derive a common abstraction for AMC 

[3].  

 

 

2.1. Dataflow Accelerator Architecture 
 

The central idea of dataflow architecture was to do away with the classic von Neumann architecture, where 

instructions are executed in the explicit order specified by the control flow. Control flows limit the window in which 

the instruction-level parallelism (ILP) can be exploited, presenting an artificial performance roadblock. In a dataflow 

architecture, execution is data-driven in that an instruction, in principle, executes as soon as all its inputs are available 

rather than when the control flow gets to it. 

We see an analogy between the bottlenecks in conventional programs and those in autonomous machines software, 

both of which can be addressed by the dataflow principle. The key for this abstraction is to view the software stack 

of an autonomous machine, such as the autonomous vehicle computation graph (Figure 3), as a macro dataflow 

graph (M-DFG), where each node represents a high-level task such as localization and motion planning.  

 

 
Figure 3: M-DFG of an Autonomous Vehicle and a commercial instantiation ([5]) 

 

This realization gives rise to the notion of dataflow accelerator architecture (DAA), where accelerators directly 

communicate with each other through dedicated on-chip buffers and coordinate autonomously. This 

architectural model has two benefits. First, it exposes higher levels of parallelisms with each accelerator (M-DFG 

node) firing whenever its input data are ready. Second, it accelerates the firing rates of M-DFG nodes by making 

operands more readily available to consumers; this is achieved by allowing producers and consumers to directly 

communicate using a per-accelerator on-chip buffer rather than through the main memory. (Initial Results: 

[4][5][6][7]) 
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2.2. Factor Graph Architecture 
 

    A factor graph is a graph representing the factorization of a probability distribution function and has been utilized 

in many AMC functions, such as localization, tracking, planning and control. Currently, researchers around the world 

are developing algorithms to use factor graph as a common abstraction for AMC functions. The factor graph 

abstraction brings several benefits: first, it provides a concise representation of robotic optimization problems to allow 

autonomous machine programmers to construct their programs. Second, its graph structure facilitates sparse data 

storage. Third, the robotic optimization problems can be solved incrementally based on historical information, thus 

guaranteeing high accuracy and low computation latency.  We identify factor graph as a common abstraction for 

many of autonomous machine basic functions, and thus a common factor graph accelerator can be utilized to 

accelerate many autonomous machine tasks and greatly simplifies the programming interface.  (Initial Results: 

[8][9]) 

          
Figure 4: a factor graph for motion planning and an instantiation on FPGA ([8]) 

 

 

2.3. Learning-Based Architecture 
 

As many autonomous machine computing tasks are accomplished using learning-based techniques (e.g. transformer 

models), AMC is evolving from Autonomy 1.0, or a modular approach, to Autonomy 2.0, an end-to-end learning-

based approach. In Autonomy 2.0, any autonomous machine performs two main tasks: perception and action, 

reflecting the natural dichotomy of the past and the future. The perception module is trained using supervised learning 

and self-supervised learning to infer one unique ground truth of world states. In contrast, the action module needs to 

search and choose from many acceptable action sequences, while anticipating the behaviors of other agents. Therefore, 

the action module makes use of methods from reinforcement learning, imitation learning, and model predictive control. 

Interestingly, while the fundamental distinctions of the two modules have not changed in Autonomy 2.0, there is a 

growing convergence of the implementation of the two modules: recent successes of large language models (LLM) to 

comprehend a large amount of information to perform multiple sub-tasks suggest that both modules can be 

implemented using a similar architecture based on Transformer. Transformer is a great algorithmic substrate for both 

the perception and action modules because of its ability to generalize. For perception, a transformer can effectively 

fuse perceptual data from multiple sensors and multiple moments into a unified representation, avoiding information 

loss from sparsification and module serialization. For action, the sequential nature of transformer makes it a perfect 

fit for processing and generating temporal data, especially for sampling multiple possible future paths. Hence, a 

common architecture abstraction is to focus on accelerating the transformer workloads and simplifies the 

perception and action tasks to different forms of transformation computation, which greatly simplifies the 

programming interface. (Initial Results: [10][11][12]) 

 

3. Programming Autonomous Machines with Only A Few Lines of Code 

 
Programming autonomous machines today is extremely challenging due to the lack of good system abstractions 

and lack of a good runtime system to manage real-time constraints as well as system resource allocation. As a result, 

programmers have to possess knowledge in autonomous machine applications, autonomous machine algorithms, and 

computing systems. To liberate programmers from the systems details, this part aims to develop a programming 
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and runtime system on top of the defined architecture to allow programmers to develop various autonomous 

machines with only a few lines of code.   

Particularly, autonomous machines currently rely on a wealth of specialized components according to the various 

tasks they are required to perform, which includes (hard) real-time tasks related to the outside environment, i.e., 

Localization and Navigation, Object Detection and Avoidance, etc. Each task communicates its data to other tasks 

within a strict performance envelop, and may also rely on very different hardware targets, e.g., scheduling with CPUs, 

GPUs for neural network processing, FPGAs or DSPs for image processing, etc. Thus, there should be expressive 

“languages” to describe, at a high level, what each task should consist of, the appropriate (domain-specific) 

semantics for it, and at the same time, the interfacing between languages. As a whole, real-time and run-time 

contexts can freely dictate which part of the underlying hardware will be used to run them at a specific moment during 

the motion of the target autonomous machine. To do so, simply designing a new set of DSLs is probably necessary, 

but insufficient. As these autonomous machines tend to heavily rely on Machine Learning techniques for at least some 

of their tasks, there should also be a way to lower the high-level description, semantic and performance expectation, 

provided for each task down to an intermediate representation which would allow the compiler to produce code for a 

family of heterogeneous devices. 

We have developed a prototype, which is a concise and precise high-level language to represent the computation 

graphs of autonomous machines.  As autonomous machine computing can be represented as dataflow graphs, naturally 

a functional programming paradigm provides an efficient way to describe the behavior of autonomous machines. With 

functional programming, autonomous machine application programmers can describe their applications with a few 

lines of specifications and code as illustrated in the following examples. (Initial Results:[13][14][15]) 

 

 
Figure 5: Programming Autonomous Machines ([13]) 

 

 

4. Linking Systems and Technologies 
 

Advancements in the semiconductor technologies will extend the capabilities of autonomous machines in terms of 

sensing, computing, and communication, and thus empowering more emerging AMC applications.  this part aims to 

link emerging technologies with AMC system architectures, particularly in the following areas:  

⚫ Sensing: sensing in 2D and 3D is essential to any autonomous machine. Recent advancements in die-stacked 

image sensors allows high-level computations (e.g., DNNs) to take place directly inside an image sensor, 

drastically reduce the data transfer cost. Single-Photon Avalanche Diode (SPAD), meanwhile, has the potential 

to capture real-time 3D scene information while mitigating many of the downsides of mechanical LiDARs.   

⚫ Computation: The key technical challenge of designing an autonomous machine computing system is to 

execute the complex computation graphs from different types of autonomous machines while meeting the real-

time performance, cost, and energy constraints. We argue that the defined AMC architecture, when coupled 
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with emerging technologies such as multi-die chiplet designs, heterogeneous integration, processing-in-

memory, and optical-analog-digital co-design will enable truly real-time AMC.   

⚫ Communication: while traditional autonomous machines utilize only on-machine intelligence, future 

autonomous machines will heavily rely on the cooperation between autonomous machines, edge servers, and 

the cloud infrastructure [16]. The key technical challenge for the cooperative autonomous machine paradigm 

is communication. To address this problem, InP/InGaAs has the potential to significantly improve the 

communication bandwidth and overcome the latency limitation. (Initial Results: [17][18][19]) 

 

 
Figure 6: linking systems and technologies 
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