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BEYOND CMOS 

1. INTRODUCTION 

1.1. SCOPE OF BEYOND-CMOS FOCUS TEAM 

Dimensional and functional scaling1 of CMOS is driving information processing2 technology into a broadening spectrum of 

new applications. Scaling has enabled many of these applications through increased performance and complexity. As 

dimensional scaling of CMOS will eventually approach fundamental limits, new information processing devices and 

microarchitectures for both existing and new functions are being explored. This is driving interest in new devices for 

information processing and memory, new technologies for heterogeneous integration of multiple functions, and new paradigms 

for system architecture. This chapter, therefore, provides an IRDS perspective on emerging research device technologies and 

serves as a bridge between conventional CMOS and the realm of nanoelectronics beyond the end of CMOS scaling.  

An overarching goal of this chapter is to survey, assess, and catalog viable emerging devices and novel architectures for their 

long-range potential and technological maturity and to identify the scientific/technological challenges gating their acceptance 

by the semiconductor industry as having acceptable risk for further development. This chapter also surveys beyond-CMOS 

devices for more than Moore (MtM) applications.  

This goal is accomplished by addressing two technology-defining domains: 1) extending the functionality of the CMOS 

platform via heterogeneous integration of new technologies (“More Moore”), and 2) stimulating invention of new information 

processing paradigms (“Beyond CMOS”). The relationship between these domains is schematically illustrated in Figure BC1.1. 

Novel computing paradigms and application pulls (e.g., big data, Internet of Things (IoT), artificial intelligence, autonomous 

systems, exascale computing) introduce higher performance and efficiency requirements, which is increasingly difficult for the 

saturating More Moore technologies to fulfill. Beyond-CMOS technologies may provide the devices, processes, and 

architectures needed for the new era of computing.  

 

Figure BC1.1 Relationship of More Moore, Beyond CMOS, and Novel Computing Paradigms and 

Applications (Courtesy of Japan beyond-CMOS Group) 

The chapter is intended to provide an objective, informative resource for the constituent nanoelectronics communities pursuing 

the following: 1) research, 2) tool development, 3) funding support, and 4) investment. These communities include universities, 

research institutes, industrial research laboratories, tool suppliers, research funding agencies, and the semiconductor industry. 

The potential and maturity of each emerging research device and architecture technology are reviewed and assessed to identify 

 
1  Functional Scaling: Suppose that a system has been realized to execute a specific function in a given, currently available, technology.  We say that system 
has been functionally scaled if the system is realized in an alternate technology such that it performs the identical function as the original system and offers 

improvements in at least one of size, power, speed, or cost, and does not degrade in any of the other metrics.   
2 Information processing refers to the input, transmission, storage, manipulation or processing, and output of data. The scope of the BC Chapter is restricted to 
data or information manipulation, transmission, and storage. 
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the most important scientific and technological challenges that must be overcome for a candidate device or architecture to 

become a viable approach.  

The chapter is divided into five sections: 1) emerging memory devices, 2) emerging logic and alternative information 

processing devices, 3) emerging device-architecture interaction, 4) beyond-CMOS devices for More-than-Moore applications, 

and 5) emerging materials integration (EMI). The former IRDS Emerging Research Materials (ERM) chapter is rolled into this 

chapter as a section named “emerging materials integration (EMI)”. Some detail is provided for each entry regarding operation 

principles, advantages, technical challenges, maturity, and current and projected performance. The chapter also discusses 

applications and architectural focus combining emerging research devices offering specialized, unique functions as 

heterogeneous core processors integrated with a CMOS platform technology. This represents the nearer term focus of the 

chapter, with the longer-term focus remaining on discovery of an alternate information processing technology beyond digital 

CMOS. 

1.2. DIFFICULT CHALLENGES 

1.2.1. INTRODUCTION 

The semiconductor industry is facing some difficult challenges related to extending integrated circuit technology to new 

applications and to beyond the end of CMOS dimensional scaling. One class relates to propelling CMOS beyond its ultimate 

density and functionality by integrating a new high-speed, high-density, and low-power memory technology onto the CMOS 

platform. Another class is to extend CMOS scaling with alternative channel materials. The third class is information processing 

technologies substantially beyond those attainable by CMOS using an innovative combination of new devices, interconnect, 

and architectural approaches for extending CMOS and eventually inventing a new information processing platform technology. 

The fourth class is to extend ultimately scaled CMOS as a platform technology into new domains of functionalities and 

application, also known as “more than Moore”. The fifth class is to bridge the gap between novel devices and unconventional 

architectures and computing paradigms. These difficult challenges are summarized in Table BC1.1.  

1.2.2. DEVICE TECHNOLOGIES 

Difficult challenges gating development of beyond-CMOS devices include those related to memory technologies, information 

processing or logic devices, and heterogeneous integration of multi-functional components, a.k.a. More-than-Moore (MtM) or 

functional diversification. 

One challenge is the need of a new memory technology that combines the best features of current memories in a fabrication 

technology compatible with CMOS process flow and that can be scaled beyond the present limits of SRAM and FLASH. This 

would provide a memory device fabrication technology required for both stand-alone and embedded memory applications. The 

ability of a chip to execute programs is limited by interaction between the processor and the memory, and scaling does not 

automatically solve this problem. The current evolutionary solution is to increase cache memory, thereby increasing the floor 

space that SRAM occupies on a chip. However, this trend eventually leads to a decrease of the net information throughput. 

Volatility of semiconductor memory requires external long-term storage media that tend to be slow to access (e.g., magnetic 

hard drives, optical CD, etc.). Therefore, development of electrically accessible non-volatile memory with high speed and high 

density would initiate a revolution in computer architecture. This development would provide a significant increase in 

information throughput beyond the traditional benefits of scaling.  

Another challenge is to sustain scaling of CMOS logic technology. One approach to continuing performance gains as CMOS 

scaling matures is to replace the strained silicon MOSFET channel (and the source/drain) with an alternate material offering a 

higher potential quasi-ballistic-carrier velocity and higher mobility than strained silicon. Introduction of non-silicon materials 

into the channel and source/drain regions of an otherwise silicon MOSFET is fraught with difficult challenges. These 

challenges include fabrication of high-quality (i.e., defect free) channel and source/drain materials on non-lattice matched 

silicon, minimization of band-to-band tunneling in narrow bandgap channel materials, fabrication of high-κ gate dielectrics on 

the new channel materials, and elimination of Fermi level pinning in the channel/gate dielectric interface. Additional challenges 

are to sustain the required reduction in leakage currents and power dissipation in these ultimately scaled CMOS and to 

introduce new materials into MOSFET while simultaneously minimizing variations in critical dimensions and statistical 

fluctuations in the doping concentrations.  

The industry is now addressing the increasing importance of a new trend of functional diversification, where added value to 

devices is provided by incorporating functionalities that do not necessarily scale according to “Moore's Law”. In this chapter, 

an “Beyond-CMOS devices for More-than-Moore Applications” section covers unconventional applications of beyond-CMOS 

technologies. The section currently covers emerging devices for hardware security.  
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Table BC1.1 Beyond CMOS Difficult Challenges 

Difficult Challenges Summary of Issues and Opportunities 

Scale high-speed, dense, embeddable, volatile/non-

volatile memory technologies to replace SRAM and 
FLASH in appropriate applications. 

• The scaling limits of SRAM and FLASH in two dimensional (2D) are driving the need for new 
memory technologies to replace SRAM and FLASH memories. 

• Identify the most promising technical approach(es) to obtain electrically accessible, high-speed, 

high-density, low-power, (preferably) embeddable volatile and non-volatile memories. 

• The desired material/device properties must be maintained through and after high temperature 

and corrosive chemical processing. Reliability issues should be identified and addressed early 
in the technology development. 

Extend CMOS scaling 

• Develop new materials to replace silicon (or III-V, Ge) as alternate channel and source/drain to 

increase the saturation velocity and to further reduce Vdd and power dissipation in MOSFETs 
while minimizing leakage currents 

• Develop means to control the variability of critical dimensions and statistical distributions (e.g., 

gate length, channel thickness, S/D doping concentrations, etc.)  

• Accommodate the heterogeneous integration of dissimilar materials.  

• The desired material/device properties must be maintained through and after high temperature 

and corrosive chemical processing. Reliability issues should be identified and addressed early 
in this development. 

Continue functional scaling of information processing 

technology substantially beyond that attainable by 
ultimately scaled CMOS. 

• Invent and reduce to practice new information processing technologies with the potential to 
replace CMOS as the performance driver. 

• Ensure that new information processing technologies have compatible memory technologies 

and interconnect solutions.  

• New information processing technologies must be compatible with system architectures that 

can fully utilize new devices. Non-binary data representations or non-Boolean logic may be 

required to employ new devices for information processing, which will drive the need for new 
system architectures. 

• Bridge the gap that exists between materials behaviors and device functions. 

• Accommodate the heterogeneous integration of dissimilar materials. 

• Reliability issues should be identified and addressed early in the technology development. 

Extend ultimately scaled CMOS as a platform 

technology into new domains of functionalities and 
applications (“more than Moore, MtM”). 

• Discover and reduce to practice new device technologies and primitive-level architectures to 

provide optimized special-purpose functional accelerator functions heterogeneously integrable 
with CMOS.  

• Provide added value by incorporating functionalities that do not necessarily scale according to 

“Moore’s Law”.  

• Heterogeneous integration of digital and non-digital functionalities into compact systems that 

will be the key driver for a wide variety of applications, such as communication, automotive, 
environmental control, healthcare, security, and entertainment. 

Bridge the gap between emerging devices and novel 
architectures and computing paradigms.  

• Identify suitable opportunities in unconventional architectures and computing paradigms that 

can utilize unique characteristics of emerging devices. 

• Identify emerging devices that can implement computing functions and architectures more 
efficiently than CMOS and Boolean logic.  

 

A longer-term challenge is invention and reduction to practice of a manufacturable information processing technology 

addressing “beyond CMOS” applications. For example, emerging research devices might be used to realize special purpose 

processor cores that could be integrated with multiple CMOS CPU cores to obtain performance advantages. These new special 

purpose cores may provide a particular system function much more efficiently than a digital CMOS block, or they may offer a 

uniquely new function not available in a CMOS-based approach. Solutions to this challenge beyond the end of CMOS scaling 

may also lead to new opportunities for such an emerging research device technology to eventually replace the CMOS gate as a 

new information processing primitive element. A new information processing technology must also be compatible with a 

system architecture that can fully utilize the new device. A non-binary data representation and non-Boolean logic may be 

required to employ a new device for information processing. These requirements will drive the need for new system 

architectures. The requirements and opportunities correlating emerging devices and architectures are discussed in the 

“Emerging Device-Architecture Interaction” section. 

1.2.3. MATERIALS TECHNOLOGIES 

The most difficult challenge for Beyond CMOS is to deliver materials with controlled properties that will enable operation of 

emerging research devices in high density at the nanometer scale. To improve control of material properties for high-density 
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devices, research on materials synthesis must be integrated with work on new and improved metrology and modeling. These 

important objectives are addressed in the “Emerging Materials Integration” section. 

1.3. NANO-INFORMATION PROCESSING TAXONOMY 

Information processing systems to accomplish a specific function, in general, require several different interactive layers of 

technology. One comprehensive top-down list of these layers begins with the required application or system function, leading to 

system architecture, micro- or nano-architecture, circuits, devices, and materials. A different bottom-up representation of this 

hierarchy begins with the lowest physical layer represented by a computational state variable and ends with the highest layer 

represented by the architecture. In this representation focused on generic information processing at the device/circuit level, a 

fundamental unit of information (e.g., a bit) is represented by a computational state variable, for example, the position of a bead 

in the ancient abacus calculator or the charge (or voltage) state of a node capacitance in CMOS logic. The electronic charge as a 

binary computational state variable serves as the foundation for the von Neumann computational system architecture. A device 

provides the physical means of representing and manipulating a computational state variable among its two or more allowed 

discrete states. Eventually, device concepts may transition from simple binary switches to devices with more complex 

information processing functionality, perhaps with multiple fan-in and fan-out. The device is a physical structure resulting from 

the assemblage of a variety of materials possessing certain desired properties obtained through exercising a set of fabrication 

processes. An important layer, therefore, encompasses the various materials and processes necessary to fabricate the required 

device structure, which is a focus of the “Beyond CMOS (BC)” chapter. The data representation is how the computational state 

variable is encoded by the assemblage of devices to process the bits or data. Two of the most common examples of data 

representation are binary digital and continuous or analog signal. This layer is within the scope of the BC chapter. The 

architecture layer encompasses three subclasses of this taxonomy: 1) nano-architecture or the physical arrangement or 

assemblage of devices to form higher level functional primitives to represent and execute a computational model, 2) the 

computational model that describes the algorithm by which information is processed using the primitives, e.g., logic, arithmetic, 

memory, cellular nonlinear network (CNN), and 3) the system-level architecture that describes the conceptual structure and 

functional behavior of the system exercising the computational model.  

 

2. EMERGING MEMORY DEVICES  

The emerging research memory technologies tabulated in this section are a representative sample of published research efforts 

(circa 2020 – 2022) describing alternative approaches to established memory technologies.3 The scope of this section also 

includes a new section on the Properties of Memory Devices for In-Memory Computing, as well as updated subsections 

addressing the Select Device required for a crossbar memory application and updated section on Storage Class Memory.  

Figure BC2.1 is a taxonomy of the prototypical and emerging memory technologies. An overarching theme is the need to 

monolithically integrate each of these memory options onto a CMOS technology platform in a seamless manner. Fabrication 

technologies are sought that are modifications of or additions to established CMOS platform technologies. A goal is to provide 

the end user with a device that behaves similarly to the familiar silicon memory chip.  

This memory portion of this section is organized around a set of eight technology entries shown in the column headers of Table 

BC2.1. These entries were selected using a systematic survey of the literature to determine areas of greatest worldwide research 

activity. Each technology entry listed has several sub-categories of devices that are grouped together to simplify the discussion. 

Key parameters associated with the technologies are listed in the table. For each parameter, two values for performance are 

given: 1) theoretically predicted performance values based on calculations and early experimental demonstrations, 2) up-to-date 

experimental values of these performance parameters reported in the cited technical references.  

The tables have been extensively footnoted, and details may be found in the indicated references. The text associated with the 

table gives a brief summary of the operating principles of each device and significant scientific and technological issues, not 

captured in the table, but which must be resolved to demonstrate feasibility. 

The purpose of many memory systems is to store massive amounts of data, and therefore memory capacity (or memory density) 

is one of the most important system parameters. In a typical memory system, the memory cells are connected to form a two-

 
3 Including a particular approach in this section does not in any way constitute advocacy or endorsement. Conversely, not including a particular concept in 

this section does not in any way constitute rejection of that approach. This listing does point out that existing research efforts are exploring a variety of basic 

memory mechanisms.   
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dimensional array, and it is essential to consider the performance of memory cells in the context of this array architecture. A 

memory cell in such an array can be viewed as being composed of two fundamental components: the ‘storage node’ and the 

‘select device’, the latter of which allows a given memory cell in an array to be addressed for read or write. Both components 

impact scaling limits for memory. For several emerging resistance-based memories, the storage node can, in principle, be scaled 

down below 10 nm,1 and the memory density will be limited by the select device. Planar transistors (e.g., FET or BJT) are 

typically used as select devices. In a two-dimensional layout using in-plane select FETs the cell layout area is Acell=(6-8)F2. In 

order to reach the highest possible 2-D memory density of 4F2, a vertical select transistor can be used.  

Table BC2.1 Emerging Research Memory Devices—Demonstrated and Projected Parameters 

 

2.1. MEMORY TAXONOMY 

Figure BC2.1 provides a simple visual method of categorizing memory technologies. At the highest level, memory technologies 

are separated by the ability to retain data without power. Non-volatile memory offers essential use advantages, and the degree 

to which non-volatility exists is measured in terms of the length of time that data can be expected to be retained. Volatile 

memories also have a characteristic retention time that can vary from milliseconds to (for practical purposes) the length of time 

that power remains on. Non-volatile memory technologies are further categorized by their maturity. Flash memory is 

considered the baseline non-volatile memory because it is highly mature, well optimized, and has a significant commercial 

presence. Flash memory is the benchmark against which prototypical and emerging non-volatile memory technologies are 

measured. Prototypical memory technologies are at a point of maturity where they are commercially available (generally for 

niche applications), and have a large scientific, technological, and systems knowledge base available in the literature. The focus 

of this section is Emerging Memory Technologies. These are the least mature memory technologies in Figure BC2.1, but they 

have been shown to offer significant potential benefits if various scientific and technological hurdles can be overcome. This 

section provides an overview of these emerging technologies, their potential benefits, and the key research challenges that will 

allow them to become viable commercial technologies.  

 

Figure BC2.1 Taxonomy of Emerging Memory Devices  

2.2. EMERGING MEMORY DEVICES 

2.2.1. NOVEL MAGNETIC MEMORIES  

This section is divided into three categories of devices based on different mechanisms, i.e., spin-transfer torque, spin-orbital 

torque, and voltage-controlled magnetic anisotropy.  

2.2.1.1. SPIN-TRANSFER TORQUE  

Spin-transfer torque (STT) MRAM has entered the commercial production stage for both embedded and standalone Flash-like 

applications. Various foundries announce the readiness of embedded MRAM (TSMC, GlobalFoundries, Samsung) for 

production, and standalone MRAM products with various density (Mb-Gb) are also available on the market for IoT and data 

center applications (Avalanche Tech, Everspin). For embedded applications, STT-MRAM possesses non-volatility, high-

endurance, scalability, low power, and fewer masks than the embedded Flash.2 It also provides great area savings and lower 

https://irds.ieee.org/images/files/pdf/2022/2022IRDS_BC_Tables.xlsx
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leakage compared with SRAM. A STT-MRAM cell consists of a magnetic tunnel junction (MTJ) with two ferromagnetic 

layers, i.e., a free layer (FL) and a reference layer (RL) sandwiching a tunnel barrier. When a current enters the RL, the 

electrons’ spin is polarized according to that of the RL. After tunneling through to the FL, the spin momentum of these spin-

polarized electrons is transferred to the FL, thus writing the FL orientation to that of the RL. The opposite operation can be 

achieved by flipping the current polarity. Compared with its in-plane counterpart, perpendicular STT-MRAM has higher 

density, lower switching current, and is easier to control in large scale manufacturing.3 

Since Flash-like STT-MRAM is entering mass production at all major foundries, this topic is covered in the More Moore 

Chapter of IRDS. For cache-level applications, research has shown 3 ns, 63 𝜇A switching of 16-nm perpendicular STT-MRAM 

with endurance above 1012 cycles and WER below 10-6.4 Reliable 10 ns, 0.12 pJ switching of 50 𝜇A with sub-ppm error rates is 

also recently demonstrated in 30 nm perpendicular STT-MTJs satisfying the last level cache (LLC) application requirements.5 

A system-level benchmarking study also indicates the use of 34 nm perpendicular STT-MRAM to replace SRAM as a LLC for 

high performance computing (HPC) at 5 nm node provides significant read and write energy gains at about 43% of the total 

macro area, achieving a nominal access latency <2.5 ns and <7.1 ns for read and write respectively.6 (see Table BC2.1) 

For SRAM-like STT-MRAM development, a major challenge is to reduce the write power consumption at sub-10 ns write 

speed. The large write power at sub-ns speed using STT requires a large access transistor, reducing density as well as reduced 

endurance due to tunnel barrier damage from higher writing current. Multiple factors contribute to this high switching current at 

sub-10 ns regime including limited spin torque efficiency, incubation delay, and intrinsic magnetization precession frequency 

on the order of GHz. A great amount of work has been devoted to increasing the switching speed, such as decreasing the FL 

saturation magnetization, lowering the FL damping factor,7 and increasing the STT effect via double-RL design8. However, 

because at most 100% of the current can be polarized, there is an upper bound of the write efficiency using the STT effect. In 

contrast, the use of writing mechanisms of fundamentally different physics, such as spin-orbit torque (SOT) and voltage-

controlled magnetic anisotropy (VCMA) effect, may help propel the next-generation of MRAM technologies for SRAM-like 

cache applications. Secondly, as the critical dimension of STT-MRAM scales down to less than 20 nm, the requirement of 

thermal stability calls for higher interfacial perpendicular magnetic anisotropy (PMA). Double-MgO barrier MTJs have shown 

2x improvement in MTJ with diameters above 10 nm,9 whereas the use of shape-anisotropy induced PMA from elongated 

ferromagnetic pillars may further the scaling of STT-MRAM below 10 nm diameter.10 Lastly, STT-MRAM with higher density 

to replace DRAM is still an open area for research. Stacking of STT-MRAM dies with logic or memory dies using through 

silicon vias,11,12 and high density 3D integration of STT-MRAM using selector-MTJ crossbar architecture13 are two high 

potential approaches. 

2.2.1.2. SPIN-ORBIT TORQUE  

Spin-orbit torque (SOT)-driven magnetization switching recently emerges as an alternative write mechanism beyond STT for 

SRAM-like cache-level applications. Though at rather early stage of research, sub-ns SOT writing has been demonstrated at 

current density of 20-40 MA/cm2
,

14 , 15  compared with 3-10 ns switching of STT-MRAM at a current density of 7 

MA/cm2.5,16(see Table BC2.1). A SOT-MRAM cell consists of a magnetic tunnel junction (MTJ) with its free layer (FL) sitting 

on top of a strip of material with large spin-orbit coupling (SOC), such as heavy metal17,18. When current flows through this 

long strip of SOT material, spin-polarized current emerges and diffuses into the adjacent FL. Like the STT case, the spin-

polarized current exerts a damping-like spin torque on the ferromagnetic layer, thus switching the FL orientation. As the write 

path is separated from the read path, a much larger read voltage can increase read speed. The major advantage of SOT over 

STT is that unlike STT where the filtered spin-polarized current is smaller than the charge current, the SOT efficiency (spin-

polarized current over charge current) can be larger than one in the SOT case. 19  From a physics perspective, multiple 

mechanisms have been found to contribute to this large damping-like SOT, including spin Hall effect (SHE)17, Rashba-

Edelstein effect18, and spin-momentum locking from topological protected electronic states19. Most experimental work has 

discovered a damping-like SOT in the in-plane transverse direction with respect to the current flow direction. However, there 

also exists a field-like SOT in many of the experimental works, which acts on the free layer like a static magnetic field with a 

fixed orientation. 

There are three types of SOT-MRAM configurations, i.e., in-plane MTJ with easy axis oriented along the current direction 

(type X), in-plane MTJ with easy axis oriented orthogonal to the current direction (type Y), and perpendicular MTJ (type Z). 

Note that only type Y can achieve field-free switching, while both type X and Z require the breaking of symmetry for 

deterministic switching. Experimentally, 0.5-ns switching with a current density of 40 MA/cm2 has been demonstrated in a 100 

x 400 nm2 type X MTJ, which will lead to 51-µA, 0.3-V, and 8-fJ write performance when scaled down to a channel width of 

50 nm.14 Another work shows 0.5-ns switching with a current density of 18 MA/cm2 in 30 x 190 cm2 type Y MTJ with a write 

error rate (WER) of 10-6.15 For perpendicular MTJ (type Z), research has shown 0.5-ns and 220-fJ write operation with a current 

density of 180 MA/cm2 of a 60 nm perpendicular MTJ with endurance up to 1011 and WER down to 10-5. Field-free switching is 

realized in this work by using an elongated biasing ferromagnet deposited on top of the SOT-MTJ.20 
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Lowering the write energy while maintaining sub-ns switching speed is the main challenge to push SOT-MRAM into cache-

level applications. A multitude of novel SOT materials beyond traditional heavy metal are being intensively investigated for 

higher SOT efficiency. Several new research directions include heavy metal alloys21, topological insulator and semimetal22,23, 

antiferromagnets24,25, and complex oxides26,27. The need of high SOT efficiency is especially critical for type Z as it inherently 

shows a larger switching current than type X and Y28. Second, SOT-MRAM suffers from a large cell size due to the three-

terminal configuration needed to perform separate write and read functions.29 A two-terminal perpendicular SOT-MRAM has 

been demonstrated by increasing the density of the current flowing in-plane in the SOT underlayer while suppressing that of the 

current flowing perpendicular in the MTJ30. Meanwhile, the scheme of multiple SOT-MTJs sharing one single SOT write line 

can partially alleviate the density disadvantage of SOT-MRAM.31 Third, a tradeoff exists between writing speed and field-free 

switching. For type Y, the FL aligning to the transverse direction does not experience any SOT; thus, an initial perturbation of 

the FL away from the easy axis is required for fast switching. A large field-like SOT or Oersted field due to SOT current can 

provide this perturbation.32 For type X and Z, a maximal SOT exists as the FL is aligned perpendicular to the spin current 

direction, thus enabling high-speed switching. There have been several approaches to break the symmetry for realizing field-

free type X and Z switching, such as lateral structural and shape-induced asymmetry28, 33 , 34 , use of interlayer exchange 

coupling35, exchange bias24, and dipolar external magnetic field36. Meanwhile, new studies show field-free switching of type Z 

MTJ using a damping-like SOT with perpendicular polarization arising from crystalline materials with broken in-plane 

symmetry37 and interfaces with SOC38,39. Last, the scalability of all three SOT types remains an open question. Type X and Y 

scaling are challenging due to variations in MTJ shape, while type X and Z scaling face obstacles in implementing field-free 

switching at scaled nodes.   

2.2.1.3. VOLTAGE-CONTROLLED MAGNETIC ANISOTROPY  

Contrary to current-driven writing mechanisms such as STT and SOT, voltage-assisted writing using electron-mediated 

voltage-controlled magnetic anisotropy (VCMA) effect40 enables lower write energy (~fJ) and smaller cell size due to reduced 

current, and therefore joule heating and select transistor size (see Table BC2.1). A VCMA-MTJ is almost the same as an STT-

MTJ, except that the tunnel barrier MgO thickness is increased to suppress the tunneling current and enhance the capacitive 

characteristics of the tunnel barrier.41 When a voltage is applied across the VCMA-MTJ, charge accumulation or depletion 

takes place at the FL/barrier interface, leading to a change of electron occupancies among different Fe 3d orbitals. Because the 

interfacial perpendicular magnetic anisotropy (PMA) originates from the Fe 3d and O 2p orbitals hybridization, this change of 

electron occupancy results in the modulation of PMA and thus the energy barrier between the two FL stable states.40,42,43 The 

VCMA effect is, therefore, a useful handle to reduce the energy barrier during the write operation, while the energy barrier is 

restored for retention purposes after writing by simply removing the VCMA bias.  

There are two main types of VCMA-assisted magnetization switching schemes. First, removal of the entire energy barrier by 

the VCMA effect facilitates a precessional motion of the FL along an in-plane bias field direction (built-in or applied). By 

precise timing of the VCMA pulse width, the FL can switch from one state to the other in half the precession period.44 Research 

has shown switching energy of 6 fJ/bit, switching speed of 0.5 ns, write voltage of 1.96 V, current density of 0.3 MA/cm2
 with a 

WER of 10-5 using perpendicular MTJs with a VCMA coefficient of 30 fJ/V-m.45 Another recent work further shows 0.15 ns 

precessional switching of 120 nm perpendicular VCMA-MTJ at a write voltage of 3.06 V, a current density of 0.3 MA/cm2
 with 

a WER of <10-6.46 Second, the VCMA effect can be utilized to reduce the write energy in in-plane and perpendicular SOT-

MTJs further.31,47 Research has demonstrated VCMA-assisted (VCMA bias of 1 V) SOT writing of 30 x 80 nm2 to 50 x 120 

nm2 in-plane MTJ using 2-ns pulse with a current density of 12 MA/cm2 with a high endurance of 1013 write cycles.48 Another 

work shows 5-ns 62 𝜇A SOT current writing (VCMA bias of 1.2 V) of 30 x 80 nm2 in-plane MTJ with WER <10-8 and 

endurance over 1012 cycles, the VCMA coefficient in this device is about 100 fJ/V-m.49 

The major roadblock of VCMA in either precessional switching or assisting SOT switching is the rather small VCMA 

coefficient of around 100 fJ/V-m, as defined by the interfacial PMA change under given electric field applied at the MgO 

barrier.50 Though ~fJ-level write performance has already been demonstrated, further scaling of MTJs requires higher VCMA 

coefficient (>300 fJ/V-m) for advanced nodes cache or storage applications.51 New materials research using Cr and Ir-based 

crystalline MTJs have shown a high VCMA coefficient of up to 1000 fJ/V-m.52,53 Meanwhile, detailed chemical and structural 

characterizations of VCMA-MTJs recently reveal that metal-oxides at the FL/MgO interface lead to large VCMA effect.54 

Another challenge facing VCMA is the longer read time, because the thicker MTJ tunnel barrier leads to a much larger MTJ 

resistance. One way to resolve this is using a large read voltage (VDD) which has reverse polarity compared with the write 

voltage to increase read speed and reduce read disturbance.55 In terms of the precessional switching scheme, another significant 

challenge is the non-deterministic nature of the writing process, which results in large WER and narrow write pulse window. 

The use of pulse shape engineering and reverse biasing can partially help56,57, whereas combining VCMA with deterministic 

writing mechanisms such as type Y SOT47 and STT58 may solve this challenge. 
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2.2.2. OXIDE-BASED RESISTIVE MEMORY (OXRAM)  

The redox-based nanoionic memory operation is based on a change in resistance of a MIM structure caused by ion (cation or 

anion) migration combined with redox processes involving the electrode material or the insulator material, or both.59,60,61 Three 

classes of electrically induced phenomena have been identified that involve chemical effects, i.e., effects that relate to redox 

processes in the MIM cell. In these three ReRAM classes, there is a competition between thermal and electrochemical driving 

forces involved in the switching mechanism. Two major types of ReRAM exist: i) those based on metal oxide (OxRAM), 

which involve oxygen ions/vacancies motion, and ii) conducting bridge-based RAM (CBRAM), which involves metal cation 

motion. This section covers the three categories of OxRAM, and conducting bridge-based RAM (CBRAM) is covered in the 

following section. Beyond CMOS has sub-categorized oxide ReRAM (OxRAM) based on the electrical switching type (bipolar 

versus unipolar) and whether a conductive filament is formed in the device. Most of the literature fits into the three categories: 

bipolar filamentary, unipolar filamentary, and nonfilamentary.62  

In most cases, the conduction is of a filamentary nature, and hence a one-time formation process is required before the bipolar 

switching can be started. If this process can be controlled, memories based on this switching process can be scaled to very small 

feature sizes. The switching speed is limited by the ion transport. If the active distance over which the anions or cations move is 

small (in the <10 nm regime) the switching time can be below few nanoseconds, down to sub-nanoseconds range.63,64  Many of 

the finer details of the ReRAM switching mechanisms are still under investigation. Developing an understanding of the 

physical mechanisms governing switching of the redox memory is a key challenge for this technology. Nevertheless, 

experimental demonstrations of scalability,65 retention,66 and endurance67 are encouraging. 

2.2.2.1. BIPOLAR-FILAMENTARY OXRAM  

Bipolar filamentary OxRAM is the most common form of oxide-based ReRAM. At any given defect density, the number of 

current paths through the dielectric, in the virgin or fresh state, is proportional to the device area, and consequently the total 

current is area dependent. In addition, the current magnitude tends to fluctuate from device to device due to randomness of the 

initial distribution of vacancies/ions. However, cell area dependency is eliminated when the current is dominated by a single 

conductive path, called conductive filament (CF). The CF provides an ultimate scaling advantage since it is only limited to the 

active filament size, which potentially may be as small as a few nm.  

A one-time forming process is required for most types of OxRAM devices to create a conduction filament across the dielectric 

layer linking the electrodes. A stable preferential conduction path is known to form through oxide films subjected to electrical 

stress: under the applied voltage, a current abruptly increases at some point in time indicating the occurrence of a dielectric 

breakdown (BD) resulting in the formation of a CF. During the forming process, electrons injected from the cathode electrode 

may lead to their trapping at defect sites in the dielectric material inducing chemical bonds breakage and the generation of 

anion vacancies (Oxygen or Nitrogen).68 ,69  

Post-forming switching events between high and low conductive states, which are operated at significantly smaller voltages, are 

believed to modify the filament conductivity by rupturing/recovering a section of the filament (primarily in the vicinity of the 

metal electrode) or changing the filament cross-section. The specific mechanisms in filament-type switching depend on the 

materials (dielectric and metal electrodes) employed in the fabrication of the memory cell and may include more than one type 

of a conduction mode.  The operation of these devices involves redox reactions of the dielectrics sandwiched between two 

electrodes.70,71 , 72 The dielectrics are mostly comprised of one or a few layers of insulating materials73 (e.g., oxide AlOx, HfOx, 

TaOx, TiOx, WOx, ZrOx, oxynitrides AlOxNy, or nitrides including AlNx and CuNx). TaOx and HfOx are the leading candidates 

among the aforementioned dielectrics, due to their superior performance (e.g., endurance) and CMOS compatibility.  

Since the demonstration of a single crosspoint HfOx device with a 10 nm dimension in 201174, scaling to a smaller size has 

been achieved by employing a sidewall electrode in a 1×3 nm2 cross-sectional HfOx-based OxRAM device with reasonable 

performance in terms of both endurance and retention.75 Up to 1012 cycles has been demonstrated with Zr:SiOx sandwiched by 

graphene oxide layers.76 Some of the filament-based metal-oxide RRAMs implemented with metal electrodes and a variety of 

fab-friendly transition-metal-oxides (i.e., HfO2, ZrO2, TiO2, etc.) and nitride devices demonstrated sub-nanosecond, 77 , 78 

switching with high (up to 1012 cycles) endurance79  and retention of more than 10 years. Extrapolated retention at 85°C by 

stressing TaOx in the temperature range from 300°C to 360°C is estimated to be years with an activation energy of 1.6 eV.  80  

Reliable switching operations have been demonstrated at 340°C with devices based on 2D layered heterostructures (e.g., 

graphene/MoS2-xOx/graphene).81 

Unconventional electrodes such as graphene have been paired with HfOx dielectrics to yield a low power consumption, a 

write/erase energy of 230 fJ per bit for a single programming transition.82 Pt/BMO((Bi, Mn)Ox)/Pt structured OxRAM device 

was used to demonstrate an even lower write/erase energy per transition, of the order of 3.8 pJ/bit for read and 20 pJ/bit for 

write operation.83  
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Large scale integration of OxRAM switching based on 1T1R schemes has been carried out by Toshiba, Panasonic and IMEC. 

In 2013, Toshiba announced the 32 Gb RRAM chip integrated with 24 nm CMOS. 84  In 2014, Panasonic and IMEC 

demonstrated the encapsulated cell structure with an Ir/Ta2O5/TaOx/TaN stack on a 2-Mbit chip at the 40 nm node. In addition, 

passive integration of 1S1R scheme has been reported by Crossbar on a 4-Mbit chip, but the material stack of the OxRAM 

switch has not been revealed.85 Ultra-fast (down to 100 ps), compliance-free, low power (< pJ) switching was demonstrated 

with 1R devices using TiN/HfO2/TiN stack.86 

A number of technical challenges hampering the commercialization of OxRAM still remain despite the significant 

advancements made in the field. One of the main challenges is the fact that the switching currents for devices based on the 

currently most mature materials (e.g., HfOx and TaOx) are still too high (above tens of A) for large arrays. Apart from that, the 

filament formation and rupture processes are stochastic in nature, which leads to variation in switching parameters like the 

voltage and resistance distribution of the switching. This is especially detrimental to certain applications such as multilevel cell 

memory. 

2.2.2.2. BIPOLAR NON-FILAMENTARY OXRAM  

The Bipolar Non-Filamentary OxRAM is a non-volatile bipolar resistive switching device composed of one or more oxide 

layers. One layer is a conductive metal oxide (CMO), which is usually a perovskite such as PrCaMnO3 or Nb:SrTiO3.87 In 

contrast to Unipolar and Bipolar Filamentary OxRAM devices – typically based on binary oxides such as TiOx, NiOx, HfOx, 

TaOx or combinations thereof—the resistance change effect of the Bipolar Non-Filamentary OxRAM is uniform. Depending on 

the materials choice and structure the current is conducted across the entire electrode area, or at least across the majority of this 

area. A forming step to create a conductive filament is not needed. Non-volatile memory functionality is achieved by the field-

driven redistribution of oxygen vacancies close to the contact resulting in a change of the electronic transport properties of the 

interface (e.g., by modifying the Schottky barrier height). Oxygen can be exchanged between layers due to the exponential 

increase in ion mobility at high fields. Low current densities, uniform conduction, and bipolar switching imply that substantial 

self-heating is not involved. Typical ROFF to RON ratios are on the order of 10.  

One class of the Bipolar Non-Filamentary OxRAM includes a deposited ion conductive tunnel layer (Tunnel ReRAM), e.g., 

ZrO2. Here, a redistribution of oxygen vacancies causes a change of the electronic transport properties of the tunnel barrier. 

Low current densities and area scaling of device currents enable ultra-high-density memory applications. Set, reset, and read 

currents scale with device area. In addition, set, reset, and write currents are controlled by the tunnel oxide and hence, can be 

adjusted by changing the tunnel barrier thickness. Both set and reset IV characteristics are highly nonlinear enabling true 1R 

cross-point architectures without the need for an additional selector device for asymmetric arrays up to 512×4096 bit. No 

external circuitry is needed for current control during set operation. A continuous transition between on and off states allow 

straightforward multi-level programming without the need for precise current control. 

The typical thickness of the CMO is greater than 5 nm and the tunnel barrier is typically 2–3 nm. If a tunnel barrier is present, 

the adjacent electrode needs to be an inert metal such as Pt to prevent oxidation during operation. For the case of PCMO cell, 

low deposition temperatures of less than 425°C of all layers enables back end integration schemes. 

Currently the technology is in the research and development stage. Depending on material system and structure cycling 

endurance over 10,000 cycles and up to a billion cycles as well as data retention from days to months at 70°C has been 

achieved on single devices.88,89,90 Within the Bipolar Non-Filamentary OxRAM device family the Tunnel OxRAM is probably 

the most developed technology. Single device functionality is demonstrated down to 30 nm. Set, reset, and read currents scale 

with area and tunnel oxide thickness facilitating sub µA switching currents with read currents in the order of a few nA to a few 

100 nA. BEOL integration schemes and CMOS/OxRAM functionality are verified for 200 nm devices on 200 mm CMOS 

wafers. True cross-point array (1R) functionality utilizing the self-selecting non-linear device IV characteristics and transistor-

less array operation is demonstrated on fully decoded 4kb true cross-point arrays (1R) build on top of CMOS base wafers. SLC 

and MLC operations are demonstrated within 4kb arrays. 

Major challenges to be resolved towards the commercialization of Bipolar Non-filamentary OxRAM are, in order of priority, 

a) improvement of data retention, b) the integration of conductive metal oxide layer (perosvkites) via ALD or the replacement 

of CMO by more process-friendly materials, and c) the replacement of Pt electrodes by a non-reactive, more process-friendly 

electrode material. 

The most important issue is the improvement of retention and the “voltage-time dilemma.” This dilemma hypothesizes physical 

reasons as to why it is difficult in a particular device and material system to simultaneously obtain a long retention, with short 

low read voltages, and fast switching at moderate write voltages.91 Even though the exact mechanism is still under investigation 

there is a common agreement that oxygen vacancies are moved by the external electric field resulting in different resistance 

states of the memory cell. Vacancy drift at room temperature is possible due to a field dependent mobility, which increases 
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exponentially with field at fields of 1 MV/cm and larger. However, current models based on a field-dependent mobility 

underestimate the experimentally observed ratio between set/reset times and data retention indicating that the mechanism is 

only partly understood. More theoretical work is needed to understand the kinetics of programming and retention mechanisms. 

Once understood, materials need to be chosen to maximize the ratio between set/reset and retention times. The goal is to 

set/reset devices at low temperatures and meet retention requirement of 10 years at 70°C, 85°C, and 125°C, depending on the 

application. A multi-layer ReRAM structure (HfO2/A2O3) was shown to improve retention by suppressing tail bit failure due to 

decreased oxygen ion diffusivity.92   

Memory cells using conductive perovskite material as an electrode have proven to show excellent device-to-device and wafer-

to-wafer reproducibility with yields close to 100%. One of the reasons might be that perovskites display high oxygen vacancy 

mobilities and tolerate large variations in the oxygen content while maintaining its crystal structure. From an integration 

perspective, ALD is the method of choice for advanced technology nodes and future 3D integration schemes. Key issues are the 

control of the metals ratio (perovskites are ternary or quaternary oxides), the control of the oxygen stoichiometry in the cell, 

oxygen loss in the presence of reducing atmospheres like H2, as well as high temperatures required for crystallization. 

Eventually a migration to binary oxides with comparable properties might be required to resolve the integration challenges.  

Platinum or other noble electrodes display superior device performance over fab-friendly electrodes like TiN. On the one hand 

it was observed that the oxidation resistance of TiN is not sufficient to prevent oxidation and the formation of TiO2 during 

operation. On the other hand, inert electrodes such as Pt or Pt-like metals are difficult to integrate. New oxidation-resistant 

electrodes and Pt alternatives are required to reduce integration challenges and enable 3D integration schemes.  

2.2.2.3. UNIPOLAR FILAMENTARY OXRAM  

Note that unipolar filamentary OxRAM has been removed from the memory tracking tables, due to lack of research over the 

period covered by this Beyond CMOS chapter. However, this text section has been maintained to provide background on earlier 

unipolar OxRAM work, due to the close relationship and key differences with bipolar OxRAM. 

Unipolar OxRAM is another resistive switching device, also referred to in the literature as thermochemical memory (TCM)59 

due to its primary switching mechanism. The device structure consists of a top electrode metal/insulator/bottom electrode metal 

(MIM) structure. Typical insulator materials are metal-oxides such as NiOx, HfOx, etc., and common metal electrodes include 

TiN, Pt, Ni, and W. In general, the device can be asymmetric (i.e., top electrode material differs from bottom electrode 

material), but unlike other types of ReRAM, asymmetry is not required.   

The first reported resistive switching in these MIM structures after 2000 was unipolar in nature (see reference93 for the first 

integrated device work that put metal oxide ReRAM in the spotlight). Unipolar is defined as switching where the same polarity 

of voltage needs to be applied for changing the resistance from high to low (SET) or from low to high (RESET). Note that in 

the general case, polarity is still important (e.g., repeatable SET/RESET switching only occurs for one polarity of voltage with 

respect to one of the electrodes94). Only in symmetric structures (e.g., Pt/HfO2/Pt), nonpolar behavior can be obtained, where 

SET and RESET are occurring irrespective of voltage polarity.95 

The switching process is generally understood as being filamentary, where conduction is caused by a filamentary arrangement 

of defects (e.g., oxygen vacancies) throughout the thickness of the insulator film. As with other filamentary OxRAM devices, 

an initial high voltage “electroforming” step is required to form the conduction filament, while subsequent RESET/SET 

switching is thought to occur through local breaking/restoration of this conduction path. 

The unipolar character of the switching indicates that drift (of charged defects) in an electric field plays a less important role 

(than it does in bipolar switching resistive memory), but that thermal effects probably dominate.96,97 On the other hand, polarity 

effects indicate anodic oxidation (e.g., at Ni or Pt electrodes) is responsible for RESET.94  These findings suggest a thermo-

chemical “fuse” model for describing this unipolar switching. It has been shown for different MIM structures that both unipolar 

and bipolar switching mechanisms can be induced, depending on the operation conditions. 98,99,100,101 An interesting work 

reporting on the Scaling Effect on Unipolar and Bipolar Resistive Switching of Metal Oxides was published.102  

A unipolar switching device is seen as advantageous for making scaled memory arrays, as it only requires a selector device as 

simple as a diode that can be stacked vertically with the memory device in a dense crossbar array.93 In addition, the use of a 

single program voltage polarity greatly simplifies the circuitry. 

On the other hand, as has been exemplified in mixed mode (unipolar/bipolar) operation of memory cells, there are important 

trade-offs between the unipolar and bipolar switching modes. On the positive side, unipolar switching mode typically shows a 

higher ON/OFF resistance ratio. On the negative side, unipolar switching is typically obtained at higher switching power 

(higher currents) than the bipolar mode, and also endurance is much more limited. As a result, major research and development 

work on resistive memories has shifted towards bipolar switching mechanisms. Yet, some interesting recent development work 
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has been reported.103,104,105,106,107,108 One paper103 shows an endurance of over 106 cycles with a resistive window of over 5 

orders of magnitude (and a reset current ~1mA). Others104,105,106 demonstrate how unipolar RRAM elements can be integrated 

in a very simple way in an existing CMOS process (known as Contact ReRAM technology). This may provide a very 

inexpensive embedded ReRAM technology. Recently, integration unipolar ReRAM with a 28 nm CMOS process was 

reported.106 The key attributes were a small cell size (0.03 µm2), switching voltage of less than 3V, RESET current of less than 

60 µA, endurance > 106 cycles, and short SET and RESET times of 500 ns and 100 µs, respectively. One paper107 shows 4Mb 

array data using this same Contact-RRAM technology, fabricated using a 65 nm CMOS process. To accommodate the low 

logic VDD process, an on-chip charge pump was applied. Set and reset voltages are less than 2V. Another paper108 reports on a 

novel approach using thermal assisted switching to lower the switching current.  

As stated above, large OFF to ON resistance ratio is an attribute of unipolar switching. The low resistance window and large 

intrinsic variability of bipolar switching OxRAM may require complex and time-consuming switching operation schemes (e.g., 

the so-called verify scheme). Further study of the stability and control of the large resistance window (at low current levels), are 

required to determine if unipolar OxRAM variability can be improved, potentially even allowing for multi-level cell operation.  

Major challenges to be resolved are the high switching current that seems inherent to the unipolar operation mode. Reset 

currents less than 100 µA are achieved but need further reduction to less than 10 µA.104,105,106 Recently, a possible solution 

incorporating thermally assisted switching has been presented.108 

2.2.3. CONDUCTING BRIDGE MEMORY 

Conductive Bridge RAM (CBRAM), also referred to as Programmable Metallization Cell (PMC), and electrochemical 

metallization cells, solid-electrolyte switch and atom(ic) switch, is a device that utilizes electrochemical control of nano-scale 

quantities of metal in thin dielectric films or solid electrolytes to perform the resistive switching operation.109, 110 The basic 

CBRAM cell is a metal–ion conductor–metal (MIM) system consisting of an electrode made of an electrochemically active 

material such as Ag, Cu or Ni, an electrochemically inert electrode such as W, Ta, Ru, or Pt, and a thin film of solid electrolyte 

sandwiched between both electrodes.111 Large, non-volatile resistance changes are caused by the oxidation and reduction of the 

metal ions by the application of low bias voltages. Key attributes are low voltage, low current, rapid write and erase, good 

retention and endurance, and the ability for the storage cells to be physically scaled to a few tens of nm. The material class for 

the dielectric film or the solid electrolyte is comprised of oxides, higher chalcogenides (including glasses), semiconductors, as 

well as organic compounds including polymers.112 

CBRAM is a strong emerging memory candidate primarily due to scalability (~10 nm),113 ultra-low energy operations due to 

fast read, write and erase times, and low voltage requirements.114 Maturity of the CBRAM technology development can be 

assessed by the fact that many companies are either shipping products based on CBRAM or are in advanced stages of 

commercialization. Recent publications show CBRAM technology application in various markets including SSDs,115 embedded 

NVM,116 and serial interface non-volatile memory replacement.117 In 2014, a 16 GB CBRAM array based on a CuTe CBRAM 

cell was demonstrated.118,119 Such efforts are critical to identify core technology challenges120 and fundamental materials and 

mechanisms.121 An improved thermal stability of the conducting bridge in CBRAM gives a new opportunity for automotive 

applications.122 Novel applications such as reconfigurable switch123 and synaptic elements in Neuromorphic systems124 based on 

CBRAM are also gaining prominence and are expected to expand the application base for this technology. An atom-switch-

based field-programmable gate array (FPGA) is also released using Cu conduction bridge in a new polymer solid electrolyte.125 

Low-power and rad-hard operation of the FPGA using the atom switch has been demonstrated in obit.126  

As with other filamentary ReRAM technologies, CBRAM is challenged by bit level variability,120 the random nature of 

reliability failure such as retention or endurance, and random telegraph noise potentially contributing to read disturbs.127 Such 

issues require large populations of bits to be studied, which suggests collaboration between universities and industry may be 

beneficial. Focus on fundamental understanding and simultaneously addressing some mitigation path such as error correction 

schemes, redundancy and algorithm development would enable closing the technology gap. 

Engineering hurdles include the availability and integration of new materials used in CBRAM at advanced process nodes 

especially when there could be issues with compatibility of thermal budgets and process tooling. The availability of integrated 

array level information suggests that some of these challenges are being resolved in the recent years.117,123 Active participation 

from semiconductor equipment vendors and material suppliers could assist in overcoming manufacturing hurdles rapidly. 

2.2.4. MACROMOLECULAR (POLYMER) MEMORY 

Macromolecular memory is a category of memory that focuses on structures incorporating a layer of polymer - the polymer 

perhaps containing nano-particles, small molecules and nanoparticles - that is sandwiched between two metal electrodes. This 

structure allows two different stable electrical states controlled through an external electrical voltage. These two stable 

electrical states, which are often called ON and OFF states (or 0 and 1), exhibit resistive, ferroelectric or capacitive natures 
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according to the physical properties of the sandwich.  The first fully-organic memory devices, based on nano-composite (a 

blend of poly-vinyl-phenol (PVP) and Bucky-ball (C60)) was presented in Materials Research Society in 2005.128 Around the 

same time, memory devices using gold nano-particles and 8-hydroxyquinoline, dispersed in a polystyrene matrix, were also 

demonstrated. 129   Since then, the interest to use an admixture of nano-particles, small molecules and polymers in the 

manufacture of electronic memory devices, is on the rise.  Non-volatile memory effects with a non-destructive read have been 

reported for a surprisingly large variety of polymeric/organic materials and blends of polymers with nanoparticles and 

molecules. Unlike the other four categories, this category is based on the material used in the switching layer(s) of the cell, but 

the mechanism is not specified. Both bipolar and unipolar (all pulses of the same polarity) switching have been demonstrated.  

Macromolecular ReRAM may have a mechanism placing it in one of the four main ReRAM categories listed above. However, 

the other mechanisms behind the electrical bistability, such as capacitive and ferroelectric, have also been reported. 

Depending on the structure of the polymer, a variety of mechanisms can be operative. For polymers supporting transport of 

inorganic ions, formation of metallic filaments is reported. In semiconducting polymers supporting ion transport, dynamic 

doping due to migration of inorganic ions occurs. Ferroelectric polymers in blends with semiconducting material give rise to a 

memory effect-based modification of charge injection barriers by the ferroelectric polarization. However, for many polymeric 

materials, the origin of the resistive switching is not well understood. To date no specific design criteria for the polymer are 

known, although clear correlations between memory effect and electronic properties of the polymer have been demonstrated.  

Stability of the memory states at high temperatures (85°C, 2  104 s) has been demonstrated.130,131 Programming at very low 

power (70 nW) has been realized.131 Assuming a 15 ns switching time for the same system, one might achieve a write energy of 

6  10-15 J/bit. Furthermore, low programming voltages have been realized:  +1.4 and -1.3 V for the two states with good 

retention time (>104 s).132 Downscaling of polymer resistive memory cell to the 100 nm length scale has been reported.133 At 

this length scale, integration of memory cells into an 8  8 array could be shown. Polymer memory cells on a flexible substrate 

have been shown.134 For amorphous carbon, downscaling to nanometer sized cells has been published (1  103 nm2).135 Using 

carbon nanotubes as macromolecular electrodes and aluminum oxide as interlayer, isolated, non-volatile, rewriteable memory 

cells with an active area of essentially 36 nm2 have been achieved, requiring a switching power less than 100 nW, with 

estimated switching energies below 10 fJ per bit.136 With regards to the mechanism of operation, extensive work on the class of 

polyimide polymers has shown clear correlations between electronic structure of the polymer and memory effects, although a 

comprehensive picture for the operation has not yet emerged. A number of studies have indicated an active role of the interface 

between macromolecular material and (native) oxide layers in the operation of the memory involving charge trapping.137,138  

The recent and past studies show resistive, 139  capacitive (charge storage, based on electric dipole formation) 140 , 141  and 

ferroelectric behavior142 of such devices. Thus, there is a need to open up a further discussion on the right pathway to realize 

such memory. 

In macromolecular memory, a large variety of operation mechanisms can be operative. A key research question concerns 

distinguishing different mechanisms and evaluating the potential and possibilities of each mechanism. A second subsequent 

step would be to identify model systems for each mechanism. Having such a model system then provides a possibility to 

benchmark the operation of the macromolecular materials. These research steps would be crucial for establishing and securing 

the collaboration of the chemical industry; for design, synthesis and development of the next generation macromolecular 

materials for memory applications, clear guidelines on the required structural and electronic properties of the macromolecular 

material are needed. For instance, memory effect originating for metallization and formation of metallic filaments requires 

macromolecular materials that support transport of ions and have appropriate internal free volume for ion conduction. Here the 

field could benefit from interaction with the field of polymer batteries. Ferroelectric polymers have been shown to give rise to 

resistive memory 143  and could benefit enormously from development of new macromolecular polymeric materials with 

combined ferroelectric switching and semiconducting structural units. Finally, a number of macromolecular memories involve 

oxide layers. Here mutually beneficial interaction with the (research) community on metal oxide ReRAM switching could 

spring, because at the macromolecular / oxide interface trap states can be engineered by tuning the electron levels of the 

macromolecular material.  

In a nutshell, this area certainly needs an attention from theoretical physicists, materials scientists, chemists and device 

engineers.   There are a number of issues that need to be addressed before we can embark on extending these devices to the real 

world.  Such issues involve understanding of the electrical bistability mechanism in nano-composite (there are a number of 

contradicting theories), maintaining the difference between low and high conduction states for a longer period time by ensuring 

the stability of the high and low states, selecting environmentally friendly materials required for fabrication of nano-

composite/polymer materials, and developing a cost-effective methodology for the fabrication of devices. 

It is not possible to replace silicon-based memory devices with polymers in the foreseeable future.  However, there are a 

number of other applications where “cheap” electronic memory devices can play a vital role.   For example, nano-composite 
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based memory devices can be directly printed on medicine bottles/packages and the information about the patient and schedule 

of taking medicine can be stored on the printed device. 

2.2.5. FERROELECTRIC MEMORY 

Coding digital memory states by the electrically alterable polarization direction of ferroelectrics has been successfully 

implemented and commercialized in capacitor-based Ferroelectric Random Access Memory (covered in Table BC2.1). 

However, in this technology the identification of the memory state requires a destructive read operation and largely depends on 

the total polarization charge on a ferroelectric capacitor, which in terms of lateral dimensions is expected to shrink with every 

new technology node. In contrast to that, alternative device concepts, such as the ferroelectric field effect transistor (FeFET) 

and the ferroelectric tunnel junction (FTJ), allow for a non-destructive detection of the memory state and promise improved 

scalability of the memory cell. The current status of and key challenges for these emerging ferroelectric memories will be 

assessed within this section. 

2.2.5.1. FERROELECTRIC FET  

The FeFET is best described as a conventional MISFET that contains a ferroelectric oxide in addition to or instead of the 

commonly utilized SiOx, SiON or HfO2 insulators. The former case requires the direct and preferably epitaxial contact of the 

ferroelectric to the semiconductor channel (metal-ferroelectric-semiconductor-FET, MFSFET), whereas the latter and 

commonly applied case maintains a buffer layer between the channel material and the ferroelectric (metal-ferroelectric-

insulator-semiconductor-FET, MFISFET). When additionally introducing a floating gate in-between the buffer layer and the 

ferroelectric, a metal-ferroelectric-metal-insulator-semiconductor structure (MFMISFET) may be obtained that shares its 

equivalent circuit representation with the MFISFET approach. By applying a sufficiently high voltage pulse to the gate of the 

FeFET (i.e., voltage drop across the ferroelectric layer larger than its coercive voltage Vc), the polarization direction of the 

ferroelectric can be set to either assist in the inversion of the channel or to enhance its accumulation state. This results in a 

polarization dependent shift of the threshold voltage VT, which allows for a non-destructive read operation and a 1T memory 

operation comparable to that of FLASH devices. 

In order to assess the material and device requirements for a reliable and scalable FeFET technology the following two intrinsic 

relations in a ferroelectric gate stack need to be considered. First it is important to note that the extent of the aforementioned 

VT-shift (memory window) in FeFET devices is primarily determined by the VC of the implemented ferroelectric rather than by 

its remnant polarization Pr .144 This results in a scaling versus memory window trade-off as Vc is proportional to the coercive 

field Ec and thickness dFE of the ferroelectric. The inability of the commonly utilized perovskite-based FeFETs to laterally scale 

beyond the 180 nm node is therewith not solely based on the insufficient thickness scaling of perovskite ferroelectrics,145,146 but 

rather due to their low Ec (SBT: 10-100 kV/cm, PZT: ~50 kV/cm, summarized in147) that in order to maintain a reasonable 

memory window requires compensation by a large dFE. A solution to this scaling retardation is provided by the high coercive 

field (1-2 MV/cm) and thickness-scalable FE-HfO2.148 This CMOS-compatible material innovation enabled the demonstration 

of a FeFET technology scaled to the 28 nm node utilizing a conventional HKMG technology and is already used in high 

volume production.149  The close resemblance of the HKMG transistor and the FE-HfO2-based memory transistor proves 

especially useful for the realization of an embedded memory solution with greatly reduced mask counts as compared to 

embedded FLASH. 

The second noteworthy and important characteristic of the FeFET gate stack is related to its intrinsic capacitive voltage divider, 

which causes a significant gate voltage drop and buildup of electric field not only across the ferroelectric, but also across the 

non-ferroelectric insulator in the gate stack. When additionally considering the incapability of the linear insulator to fully 

compensate the polarization charge of the ferroelectric layer, it becomes apparent that even in the case of no external biasing 

the capacitive voltage divider leads to a buildup of a permanent electric field. The so-called depolarization field building up in 

the ferroelectric is opposed to the polarization direction of the ferroelectric and to the electric field induced in the insulator150. 

The capacitive voltage divider is therefore directly responsible for the retention loss during stand-by as well as for the gate 

voltage distribution and the corresponding charge injection during write operations. This retention- and endurance-critical 

distribution of the electric field within the gate stack may be optimized by choosing the insulator capacitance as high as 

possible and the ferroelectric capacitance as low as possible. In the perovskite-based FeFET this is achieved by utilizing high-k 

buffer layers and is additionally fostered by the unavoidably large physical thickness of the perovskite ferroelectrics.4, 151. In the 

case of the aggressively scaled FE-HfO2-based FeFET, the small thickness of the ferroelectric is compensated by the 

comparably low permittivity of HfO2, the possibility to use ultra-thin interfacial layers, and by the depolarization resilience of 
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the high Ec.147,152 This leads to the situation that despite the markedly different stack dimensions and materials used, the 

electrically obtained characteristics are quite similar. Fast switching speed (≤100 ns), switching voltages in the range of 4-6 V, 

and 10-year data retention and endurance in the range of 1012 switching cycles have been demonstrated for FE-HfO2-148,149,153,154 

as well as for perovskite-based FeFETs.144,155,156 In the case of cycling endurance, however, the high Ec of FE-HfO2 and the 

correspondingly large electric field in the insulator facilitates charge trapping during write operation, which was identified as 

the root cause for the limited endurance of 105 cycles observed in FE-HfO2-based FeFETs with ultra-thin interfacial layer 

enabling excellent data retention.157 Nevertheless, in an alternative approach utilizing a thicker insulator and sub-loop operation 

it was demonstrated that at the cost of retention a cycling endurance >1012 may still be obtained.153 In the current stage of 

development this endurance versus retention trade-off may be tailored, spanning the application range from embedded NOR-

FLASH replacement with high retention requirements to low refresh rate 1T DRAM requiring high cycling endurance. 

Entirely overcoming this endurance versus retention trade-off will require an improved stack design that may include a tailored 

polarization hysteresis (low Pr and high Pr/Ps ratio)144, a reduced trap density at the interfaces,157 an optimized capacitive 

voltage divider by area scaling in the MFMISFET approach158 or the realization of a MFSFET device by implementing recent 

breakthroughs in the epitaxial growth of FE-HfO2.159 Despite promising results obtained for perovskite-based FeFET devices 

implemented into 64Kb NAND-Arrays at a feature size of 5 µm156, little is known about the variability and array characteristics 

of FeFET devices scaled to technology nodes approaching the grain or domain size of the implemented ferroelectrics. Initial 

investigations on phase and grain distribution in doped HfO2 based ferroelectric thin films and the effects of such granularity on 

device level characteristics of scaled FeFETs (such as on the statistical nature of switching) have recently been reported in Refs. 
160,161,162. Recently, 64 kb and 32 Mb FeFET arrays were demonstrated in the 28 nm163 and the 22 nm FD-SOI CMOS 

platform,164 respectively—in each case, a clear low and high VT separation at the array level was demonstrated. Nevertheless, in 

order to fully judge the variability of ferroelectric phase stability at the nanoscale and to guide material optimization and 

fundamental understanding of the phenomenon, larger array statistics in the kB to Mb range and high-resolution PFM data will 

be required.  Besides, recent demonstration of non-volatile memory operation based on antiferroelectricity—a phenomenon 

closely related to ferroelectricity—in work-function engineered ZrO2 thin film capacitors may allude to new way of addressing 

and potentially solving some of these challenges in FeFETs.165 

2.2.5.2. FERROELECTRIC TUNNEL JUNCTION 

The ferroelectric tunnel junction, a ferroelectric ultra-thin film commonly sandwiched by asymmetric electrodes and/or 

interfaces, exhibits ferroelectric polarization induced resistive switching by a non-volatile modulation of barrier height. With 

the tunneling current depending exponentially on the barrier height, the ferroelectric dipole orientation either codes for a high or 

a low resistance state in the FTJ, which can be read out non-destructively. The resulting tunneling electroresistance (TER) 

effect of FTJs, the ratio between HRS and LRS, is usually in the range of 10 to 100 (166 and references therein). However, giant 

TER of > 104 has most recently been reported in a super-tetragonal BiFeO3 based FTJ by Yamada et al.167 A similarly high 

TER was demonstrated by Wen and co-workers168 for a BaTiO3 tunnel barrier by replacing one metal electrode of the FTJ with 

a semiconducting electrode. With this new junction design, the modulation of tunneling current does not only rely on barrier 

height, but due to a variable space charge region in the semiconductor, also on a barrier width modification. With these most 

recent findings, two strategies to achieve giant TER have been identified: either use a ferroelectric barrier with a large 

polarization such as BiFeO3 or use a semiconductor as electrode material to modulate the barrier width by field-induced carrier 

depletion. 

The MFM-based structure of FTJs may be able to enable a retention time (> 10 years) and very high cycling endurance (> 1014) 

properties of conventional FRAM. Nonetheless, in order to have a significant tunneling current, ferroelectric films in FTJs 

usually have a thickness ranging from several unit cells to ~5 nm, which is much thinner than in commercialized 1T-1C FRAM 

(> 50 nm). Due to larger interface contributions and increased leakage currents at reduced thickness, experimental data of these 

material systems might strongly deviate from their thick film behavior and need to be assessed separately.169 However, even 

though only limited data are available up to this point, promising single cell characteristics have already been demonstrated, 

such as the most recent demonstration of 4x106 endurance cycles and extrapolated data retention of 10 years at room 

temperature for a BiFeO3-based FTJ.170 In the context of retention, it should be noted that despite improved TER, the newly 

proposed MFS-FTJ structure will give rise to a depolarization field, which will most likely degrade memory retention in a 

similar manner as described for the FeFET in Section 2.2.5.1. The highly energy efficient electric field switching, common to 

all ferroelectric memories, enables fast (10 ns171) and low voltage (1.4 V170) switching in FTJ devices and results in a minimal 

power consumption during write operation (1.4 fJ/bit, calculation based on the device characteristics given172). Due to the 

availability of non-destructive read-out and the further reduced ferroelectric thickness in FTJ devices as compared to 

conventional FRAM, improved voltage scaling and total energy consumption may be expected from this technology.  
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Similar to most other two-terminal resistor-based memories with insufficient self-rectification, the elimination of sneak currents 

in large crossbar arrays is most efficiently suppressed utilizing 1T-1R or 1D-1R cell architecture. In terms of scaling, this two-

element memory cell, as well as the scalability of the selector device itself, has to be considered.173 Simply based on the lateral 

dimensions of the FTJ element (assuming unlimited scalability of the selector), scaling below 50 nm2,172based on PFM data,174 

most likely appears possible. However, with further scaling a simultaneous enhancement of the LRS current density is required 

to maintain readability in massively parallel memory architectures. A recent breakthrough of 1.4x105 A/cm² current density at 

300 nm feature size has been achieved by Bruno et al.175 utilizing low resistivity nickelate electrodes. Based on these results 

maintaining 10 µA read current for feature sizes <100 nm appears possible. New FTJ concepts are also emerging; for example, 

engineered domain walls within the ferroelectric layer in an FTJ structure can lead to exotic quantum phenomenon such as 

resonant electron tunneling and quantum oscillations in the electrical conductance albeit at low temperatures.176 

FTJ based memories are currently at a very early development stage, and most of the research activity is focused on perovskite-

based ferroelectrics. Further investigations reaching beyond single device characterization will be needed to fully judge the 

scalability of FTJ as well as its MLC capability suggested in Ref. 177. So far, no conclusions can be drawn on retention and 

statistical distribution of the polarization induced resistance states in large arrays. However, when considering the collective 

phenomenon of ferroelectricity with multiple dipoles contributing to a resistance change as opposed to filament-type resistive 

switching, advanced scalability may be expected. First results have shown that the FTJ is very similar to ReRAM in terms of 

electrical behavior and memory design, albeit distinct physical mechanisms. It should be noted that current prototypes could 

actually have both FTJ and ReRAM traits, as resistive switching is common among oxides including ferroelectric perovskites 

(178 and references therein). For future development, the ferroelectric film in an ideal FTJ should be as thin as possible to allow 

scalability (while maintaining sufficient read current) and much less defective than that in ReRAM (e.g., with fewer oxygen 

vacancies), so that the mechanism of ferroelectric switching can dominate electrical behavior with little influence from 

mechanisms related to conducting filaments. The manufacturability of the rather complex electrode-perovskite ferroelectric-

system of the FTJ concept will largely rely on the availability of high throughput and CMOS-compatible epitaxial growth 

techniques for large substrates or alternatively on the unrestricted feasibility demonstration of a polycrystalline FTJ. In this 

context it is worth noting that the CMOS-compatibility and advanced thickness scalability of ferroelectrics based on HfO2 and 

its doped variant154 as well as recent breakthroughs in its epitaxial growth159 might yield great potential for the 

manufacturability of competitive FTJs. Experimental demonstrations of FTJs based on doped variant of HfO2 were recently 

reported in Refs. 179,180,181. 

2.2.6. MASSIVE STORAGE DEVICES 

Device scaling has become a matter of strategic importance for modern and future information storage technologies, which 

motivates an exploration of unconventional materials with competitive performance attributes. By 2040 the conservative 

estimate the worldwide amount of stored data is 1024 bits, and the high estimate is ~1029 bits182 (these estimates are based on 

research by Hilbert and Lopez183). In nature, much of the data about the structure and operation of a living cell is stored in the 

molecule of deoxyribonucleic acid (DNA) and using nucleic acids molecules, such as DNA, for memory storage has been 

proposed. DNA has an information storage density that is several orders of magnitude higher than any other known storage 

technology: 1 kg of DNA stores 10^24 bits, for which >109 kg of silicon Flash memory would be needed.182 Thus, a few tens of 

kilograms of DNA could meet all of the world’s storage needs for centuries to come.  

A number of recent studies have shown that DNA can support scalable, random-access and error-free information 

storage.184,185,186 A state-of-the-art operating system developed at the University of Washington with an industry partner is a 

DNA-based archival storage framework that supports random access from a DNA key-value store.187 The DNA-stored files are 

compatible with mainstream digital format, and large-scale DNA storage up to 200 MB has been demonstrated.188 There are 

still many unknowns regarding both DNA operations in cell and with regard to the potential of DNA technology for massive 

storage applications. DNA volumetric memory density far exceeds (103–107) projected ultimate electronic memory densities. 

Also, in the living cell, the memory read/write operations occur at high speed (<100 µs/bit) and require very low energy of ~10-

17 J/bit or 10-11 W/GB.189 DNA can store information stably at room temperature for hundreds of years with zero power 

requirements, thus making it an excellent candidate for large-scale archival storage.189 Also, DNA is an extremely abundant and 

totally recyclable material. Recently, a method for efficient encoding of information—including a full computer operating 

system—into DNA was presented, which approaches the theoretical maximum for information stored per nucleotide.190 One of 

the goals for research efforts is to demonstrate miniaturized, on-chip integrated DNA storage. New methods for DNA synthesis 

and sequencing are key components for these developments. 

Two major categories of technical challenges remain: 

• Physical Media: Improving scale, speed, cost of synthesis and sequencing technologies. 

• Operating System: Creating scalable indexing, random access and search capabilities. 
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The key technological and scientific challenges are in improving performances beyond the life sciences industry. In the life 

science industry applications require perfect synthesis and perfect sequencing, while scale, throughput and cost are secondary 

considerations. For data storage, high read and write error rates can be tolerated, and information encoding schemes can be 

used. In this application, scale and throughput and cost are primary considerations. Current DNA storage workflows can take 

several days to write and then read data, due to reliance on life sciences technologies that were not designed for use in the same 

system. The demonstrated DNA write-read cycle is too slow and costly to support exascale archival data storage. Solving this 

problem will require: 1) Substantial reductions in the cost of DNA synthesis and sequencing, and 2) Deployment of these 

technologies in a fully automated end-to-end workflow. 

2.2.7. MOTT MEMORY 

Mott memory is a metal/insulator/metal capacitor structure consisting of a correlated electron insulator (or Mott insulator). 

Correlated electron insulators often show the electronic phase transition accompanied by a drastic change in their resistivity 

under external stimuli such as temperature, magnetic field, electric field, and light. Mott memory exploits this electronic phase 

transition (called Mott metal-to-insulator transition or Mott transition191) induced by an electric field. A mechanism of the Mott 

memory has been theoretically proposed in terms of the interfacial Mott transition induced by the carrier accumulation at a 

Schottky-like interface between a metal electrode and a correlated electron insulator.192 The theory also predicted that the 

resistive switching due to the interfacial Mott transition has a non-volatile-memory functionality, because the Mott transition is 

a first-order phase transition due to its nature.191 In addition, Mott memory based on the Mott transition involving a large 

number of carriers (more than 1022 cm-3) has in principle an advantage in device scaling, because there are a sufficient number 

of carries for the Mott transition even in a nanoscale device. In an ideal Mott transition, the electrons localized due to the strong 

electron-electron correlation come to be itinerant, via the stimuli, such as application of an electric field, and so forth. It needs 

no dopants, and the mechanism withstands the miniaturization of the (silicon) devices.   

The Mott transition induced by an electric field or carrier injection has been experimentally demonstrated in a correlated 

electron material of Pr1-xCaxMnO3.193 After this demonstration, two-terminal devices such as switches and memories have been 

intensively studied using such correlated electron oxides as Pr1-xCaxMnO3, 194 , 195  VO2, 196 , 197 , 198  SmNiO3, 199  NiO, 200 , 201 

Ca2RuO4, 202  and NbO2, 203 , 204  and using Mott-insulator chalcogenides of AM4X8 (A=Ga, Ge; M=V, Nb, Ta; X=S, 

Se).205,206,207,208 In addition to these inorganic materials, reversible and non-volatile resistive switching based on the electronic 

phase change between charge-crystalline state and quenched charge glass has recently been demonstrated in the organic 

correlated materials of -(BEDT-TTF)2X (where X denotes an anion).209  

SmNiO3 exhibits a colossal (8 orders in magnitude) resistance jump by hydrogenation. The SmNiO3 channel with the solid state 

proton gate has demonstrated the electric base gated large ON/OFF switching.199 The trigger for switching is based on the 

proton intercalation by electric field, and the DFT calculation explains the large gap opening by additional electron doping via 

protonation and is the origin for colossal resistance jump phenomena.210 These results indicate that the device using the metal – 

insulator (Mott) transition driven by the strong electron-electron correlation is powerful as well as appropriate for the switching 

devices. 

Scalability has been demonstrated down 110 × 110 nm2 in Mott memristors consisting of NbO2 that shows the temperature-

driven Mott transition from a low-temperature insulator phase to a high-temperature metal phase. The switching speed, 

energies, and endurance of the NbO2-Mott memristors have been evaluated to be less than 2.3 ns, of the order of 100 fJ, and 

>109
, respectively.203,204 The programing and read voltages reported so far are <2 V and <0.2 V, respectively.201 The non-

volatile resistive switching of AM4X8 single crystals was induced by the electric field of less than 10 kV/cm.205,206,207,208 This 

suggests that if the device consisting of a 10-nm-thick AM4X8 film is fabricated, the switching voltage will be less than 0.01 V. 

Although non-volatile switching has been reported in the devices based on AM4X8 and -(BEDT-TTF)2X, their retention 

characteristics are not elucidated in detail.205,206,207,208,209 In addition, the NbO2-Mott memristors and VO2-based devices exhibit 

volatile switching.196,197,198,203,204  The retention is thus a major concern of Mott memory. In principle, the Mott transition can be 

driven even by a small amount of carrier doping to the integer-filling or half-filling valence states of the transition element.191 

However, because of disorders, defects, and spatial variation of chemical composition, a rather large amount of carriers of more 

than 1022 cm-3 are required to drive the Mott transition in actual correlated electron materials, resulting in a relatively large 

switching voltage required in the Mott memory. Therefore, one of the key challenges is the control of crystallinity and 

chemical-composition in the thin films of correlated electron materials, including the integration of the correlated electron 

materials onto Si platform. There are some theoretical mechanisms proposed for Mott memories such as the interfacial Mott 

transition192 and the formation of conductive filament generated by local Mott transition.205,207,208 However, a thorough 

understanding of the mechanism has not been achieved yet. Therefore, the elucidation of detailed mechanism is also a major 

research challenge. 
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2.3. CANDIDATES DEVICES FOR ANALOG IN-MEMORY COMPUTING 

Analog In-Memory Computing is an emerging research architecture that promises to enable unprecedented performance per 

watt capabilities for certain workloads, such as deep neural networks, by performing matrix operations directly on weights 

stored in memory. This architecture, which is discussed in detail in Section 4, creates different requirements for memory 

devices than when used for traditional information storage applications. In the following we briefly describe the memory device 

candidates and their key properties as they relate to analog in memory computing.  

2.3.1. RERAM AND CBRAM  

ReRAM memory is very dense and can be integrated in the back end of the line (BEOL) since the process temperature of 

ReRAM is usually lower than 400C, thus avoiding the use of transistor area for the memory. Several ReRAM crossbars have 

been demonstrated for inference. 211,212,213 The conductance of CBRAM can be tuned as an effect analogous to the long-term 

potentiation of biological synapses, which enables analog memory and neural computing systems. 214  A key challenge is 

maintaining good analog properties and high resistance at the same time. Nanoscale oxide-based cross-bar memristors with 

analog properties at high resistance were demonstrated owing to a natural thermal-confinement-effect when reducing the cross-

point area.215,216 ReRAM for training remains a challenge due to the non-ideal electrical characteristics of synaptic devices.  

2.3.2. PHASE CHANGE MEMORY 

Phase-change memory (PCM) offers a wide range of analog memory states due to the large contrast between the amorphous 

and crystalline phases.217  For memory applications, PCM devices can be switched between a high-resistance RESET state, 

formed by melting and quenching an amorphous plug that blocks a narrow constriction within the device; and a low-resistance 

SET state created by a crystallizing voltage pulse, which frequently ramps down in amplitude over a long duration to produce 

an extremely low-resistance state.   

In contrast, for VMM applications where “device history” is a desirable feature, PCM devices programmed into the RESET 

state can be slowly brought to a much lower-resistance SET state using many repeated partial-crystallization pulses.218 Careful 

choice of pulse condition can stretch this procedure out to many hundreds of pulses.219 Some recent work has shown some 

evidence for gradual increases in resistance with multiple successive pulses,220 although the operating regime must be carefully 

prepared, and the underlying mechanisms are not fully understood. 

Many early VMM results using PCM focused on in-situ training.725 Challenges for training include the one-sided nature of 

PCM programming, the nonlinear evolution of conductance with partial crystallization pulses, and the stochastic nature of PCM 

programming.   

More recent VMM results using PCM have turned to inference of previously trained weights. Key challenges for inference 

include accurate programming of synaptic state despite the inherent stochasticity observed in PCM device programming,221,222 

reducing resistance drift due to long-term relaxation of the amorphous phase, and ensuring long retention at high operating 

temperatures.   PCM unit-cell designs that sacrifice some of the inherently large resistance contrast in order to suppress 

resistance drift have been proposed and demonstrated, in both memory and VMM contexts.223,224,225  It turns out that intra-

device (e.g., shot-to-shot) variability in the rate at which devices drift over time (the “drift coefficient”) is more problematic 

than the actual drift itself.226  This is because any highly-predictable signal loss can be compensated by signal amplification, at 

least until background noise becomes strongly amplified. 

2.3.3. ELECTROCHEMICAL MEMORY (ECRAM): 

Electrochemical random access memory (ECRAM) has recently emerged as a promising candidate for analog memory.227, 730 

ECRAM is a family of three-terminal devices where charge sent to the gate electrode causes an electrochemical redox reaction 

in the bulk of the channel. The reaction modulates the source drain conductance. ECRAM channel and gate electrodes are made 

of redox-active materials (organic or inorganic) that conduct both electrons and ions (i.e., mixed conductors) and an ionically-

conducting, electron-blocking electrolyte. To maintain global charge neutrality in the device, a counter-ion, typically lithium 

ions or protons, moves between the gate and channel and compensates for the changing oxidation state of the gate and channel. 

To retain the analog state and prevent the ECRAM from discharging, an access device such as a diffusive memristor is required 

on the gate. 

In contrast to traditional semiconductor devices where dopants are static after manufacturing, ECRAM represents a class of 

devices with dynamic dopant control. For analog memory, a major advantage of ECRAM is the large, charge-neutral 

volumetric capacity that can be exploited to support gradual tuning of the transistor source-drain conductance. Such properties 

have promise for synaptic memory for artificial intelligence applications.729 The storage capacity can be several orders of 

magnitude larger than traditional semiconductor devices where information is stored at oxide interfaces. For example, flash-

based memory store roughly 50 aC for a 14/16 nm node. By comparison, lithium containing metal oxides report volumetric 
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capacities at ~5,000 C/cm3 and polymer-based electrodes reported at ~50 C/cm3 which could provide as much as 50 pF/𝜇m2 for 

a 10nm thick channel.  

Additionally, ECRAMs may offer promise for low voltage digital logic.228 Dynamic doping can lead to sharp metal insulator 

transitions, e.g., due to correlated electron effects in redox-active oxides,229 and may result in abrupt low voltage switching. 

2.3.4. MAGNETIC NEURAL NETWORK DEVICES 

Several types of magnetic circuits can be used to implement neural networks including spin-diffusion-based devices,230 charge-

coupled spin logic (CSL),231 and domain wall logic (mLogic).232. The use of these different devices has been benchmarked.233 

Magnet switching dynamics that follow the Landau-Lifshitz-Gilbert (LLG) equation with a spin-transfer-torque term are quite 

similar to the cell dynamics in a Cellular Neural Network (CeNN). CeNNs have been designed based on spin diffusion using 

all-spin logic (ASL) with PMA magnets as the basic building block. A CeNN cell can also be implemented by using MTJs as 

synapses and using spin Hall effect or domain wall propagation-based devices as the neuron. In all these cases, the read-out 

circuit consists of read and reference MTJs and an inverter that amplifies the voltage division between the two MTJs. 

In contrast to Boolean circuits, spintronic devices are more attractive compared to charge-based devices. This is because a 

single magnet can mimic the functionality of a neuron, and these spintronic devices operate at a low supply voltage. The 

domain wall device provides the best performance, in terms of Energy-Delay Product (EDP), thanks to its low critical current 

requirement. The spin diffusion based CeNN with IMA magnets consumes more energy due to the large critical current 

required to switch the magnet.  

For optimal circuit-level performance using spintronic devices, several properties are desired including: MTJs with a large 

TMR and a moderate resistance-area product, large spin injection coefficient 𝛽, large perpendicular anisotropy Ku for PMA 

magnets, large spin Hall angle 𝜃 for SHE materials, and small critical depinning current for domain wall magnets. 

2.3.5. FLOATING GATE 

Floating gate synapses (so-called “synaptic transistors”) were first developed in 1994.234 They are modified EEPROM devices 

which can be fabricated in a standard CMOS process and programmed to within 0.2% accuracy.235 A number of sophisticated 

systems have been developed based on the arrays of synaptic transistors.236,237,238. The main advantage of analog and mixed-

signal VMMs based on floating gate memories are very high input and output impedances, which help reducing overhead of 

peripheral circuitry. The main drawback of synaptic transistor approach is the relatively large cell area, i.e., > 1000F2, where F 

is the minimum feature size239, leading to higher interconnect capacitances and hence larger energy losses and time delays in 

analog computing circuits. 

Recently, it was shown that much better area may be obtained re-designing, by simple re-wiring, the arrays of the ubiquitous 

NOR flash memories with their highly optimized cells.240,241 One representative example is Embedded SuperFlash (ESF) 

memory from Silicon Storage Technology, Inc. 242  The areas of the modified arrays of the ESF1 and ESF3 NOR flash 

memories, with the latter technology scalable to F = 28 nm, are close to 120F2 and may be further reduced to ~40F2. (Note that 

such areas are much smaller compared to the contemporary 1T1R ReRAM.) Modified 180 nm ESF1 technology was 

successfully utilized to demonstrate a medium-scale (28×28-binary-input, 10-output, 2-layer, 101,780-synapse) network for 

pattern classification. The measured delay and energy dissipation compared very favorably with digital approaches, while the 

results for chip-to-chip statistics, long-term drift, and temperature sensitivity of the network were also very encouraging. 

Simulations have shown that similarly superior energy efficiency may also be reached in mixed-signal neuromorphic circuits 

based on industrial-grade SONOS memories.243,244 

Even higher density floating gate neuromorphic circuits can be achieved by utilizing NAND flash memories.  2D NAND 

memory devices designed for digital memory application are already capable of storing 4 bits (16 levels) in a single transistor 

of 100 nm × 100 nm area in 32nm process.245 Commercial NAND manufacturers have shown devices at 15 nm246 and 19 

nm.247,248 EEPROM devices are found at every CMOS IC node, including 7 nm and 11 nm nodes. At these nodes, we still 

expect very small capacitors to retain 100s of quantization levels (7-10 bits) limited by electron resolution. In practice, larger 

capacitors are used, resulting in sufficiently high potential resolution. One expects EEPROM linear scaling down to 10 nm 

process to result in a 30 nm × 30 nm or smaller array pitch area. Perhaps, the most exciting opportunity is presented by the 

modern 3D NAND circuits. 3D NAND memories already feature 96 layers of floating gate cells.249 The number of layers is 

projected to further increase to 512 to enable 10 Tb/in2 density,250 which will be essential for storing large-scale neuromorphic 

models. The very high density of 3D NAND circuits is achieved at the cost of certain restrictions at the circuit level, such as 

cells connected sequentially in strings and shared gate (word) voltages for the cells in the same level.  The sequential structure 

of NAND flash memory can be efficiently exploited by using time multiplexed computations at the architecture level, in which 

one cell from a string being utilized at a particular time step in a distributed VMM circuit.251 Time-domain encoding of inputs 
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was proposed to implement VMM circuits based on the existing 3D-NAND flash memory blocks with common word plane 

structure, not requiring any modification.252  

2.3.6. CAPACITOR-ON-GATE 

A recent proposal called for a small capacitor that can be programmed with standard CMOS devices to be tied to the gate of a 

read transistor.253 In contrast to DRAM, where the charge on the capacitor is transferred through a select transistor onto a bit-

line for readout, here the voltage on the capacitor modulates the conductance of a read transistor by direct attachment to its gate 

terminal.  Although the charge leaks away with a time-constant of milliseconds, the training process can succeed if the time-

per-example is at least 100,000× smaller than the decay constant (e.g., 20 ms decay constant and 200 ns per training 

example).254  One method to obtain good update linearity, so that the amount of charge added and subtracted are balanced, is to 

use multiple large transistors to supply the current in each unit cell. Additional transistors are then added in order to ensure that, 

as per the weight-update algorithm, charge is added or subtracted only when both the upstream neuron (say, along the same 

row) and the downstream neuron (along the same column) agree that weight update should occur in a particular synapse shared 

by those two neurons.  Recently, Ambrogio et al. introduced a combined PCM+capacitor-on-gate unit-cell, in which the PCM 

provided the non-volatile storage in a “higher significance” conductance, and the capacitor-on-gate devices provided high 

update linearity in a “lower significance” conductance, with periodic weight transfer from the lower to higher significance 

devices.  The number of transistors associated with the capacitor could be reduced to three: The read transistor, an NFET for 

charge subtraction and a PFET for charge addition. This was made possible by giving the downstream neuron control over the 

NFET and PFET gates, and having the upstream neuron control the source contacts of these same two charge 

addition/subtraction transistors. Furthermore, variability between charge-addition and charge-subtraction due to process 

nonuniformity was compensated upon weight transfer from capacitor-on-gate cell to the PCM devices using a “polarity 

inversion” technique.734 Later, it was shown that this same technique could suppress fixed device variabilities in other kinds of 

lower-significance conductances, including PCM devices.255  This combined PCM+capacitor-on-gate unit-cell was shown to 

allow GPU-equivalent training accuracies, despite the known imperfections of PCM devices and typical fab-level CMOS 

variability in the capacitor-on-gate devices.734  

2.3.7. CHARGE-BASED ANALOG ARRAYS FOR VMM 

Charge-based analog arrays are amenable to very low energy and high-density parallel implementations of vector-matrix 

multiplication (VMM). Efficient charge storage and weighting in array-based analog computing are achieved through the use of 

capacitive reactive elements or other charge-based linear weighting elements such as charge-coupled devices (CCDs) and 

charge-injection devices (CID). Their efficiency stems from inherent charge conservation throughout the computational cycle. 

Charge-injection device (CID) arrays store each bit of the matrix element in a DRAM storage element. The charge for each bit 

in a weight is stored in one of two locations. If the input bit that is multiplying the weight bit is 1, the charge is non-

destructively shifted between locations during readout causing a charge to be capacitively induced on the bit line. The charge 

induced by multiple weights can be summed and sensed allowing the entire matrix to be read out in a single operation. Multi-bit 

inputs are processed serially. Furthermore, charge is recycled during the computation, and so adiabatic techniques can be used 

to further lower the energy (at the cost of speed).  

High-density mixed-signal adiabatic processors256,257,258 using CIDs have been developed using these principles. To optimize 

for resonant adiabatic energy recovery a stochastic encoding and decoding scheme can be used to ensure a constant capacitive 

load of the CID array. This has resulted in better than 1.1 TMACS/mW efficiency excluding on-chip digitization.  

Alternatively, several approaches have combined a capacitive charge-based VMM with analog-to-digital conversion to 

maintain high overall system efficiencies. Many analog multiply-and-accumulate operations can be performed for each 

digitization. High precision implementations of capacitive charge based VMM have achieved low-pJ/MAC energy 

efficiencies,259 while low-precision versions have achieved efficiencies at the level of 100 fJ/MAC.260 Comparison of key 

metrics with the state-of-the-art in analog capacitive VMM ICs261,262,263,264, is given in Table BC4.2 above. 

Table BC2.2 Metrics for Analog Capacitive Vector-Matrix Multiply (VMM) ICs 

 

2.4. MEMORY SELECTOR DEVICE  

The capacity (or density) is one of the most important parameters for memory systems. In a typical memory array, a memory 

cell can be viewed as being composed of two components: the ‘storage node’, which is usually characterized by an element 

with switchable states, and the ‘selector’, which allows the storage node to be selectively addressed for read and write. Both 

components impact scaling limits of memory. It should be noted that for several advanced concepts of resistance-based 
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memories, the storage node could in principle be scaled down below 10 nm,265 and the memory density is often limited by the 

selector devices. Thus, the selector device represents a serious bottleneck for emerging memory scaling to 10 nm and beyond.  

The most commonly used memory selector devices are transistors (e.g., FET or BJT), as in DRAM, FRAM, etc. Flash memory 

is an example of a storage node (floating gate) and a selector (transistor) combined in one device. Planar transistors typically 

have the footprint around (6-8)F2. In order to reach the highest possible 2D memory density of 4F2, a vertical transistor selector 

may be used. However, transistors as selector devices are generally unsuitable for 3D memory architectures. Two-terminal 

memory selector devices are preferred for scalability and can be used in crossbar memory arrays to achieve 4F2 footprint.266,267 

The function of selector devices is essentially to minimize leakage through unselected paths (“sneak paths”). Two-terminal 

selector devices can achieve this through asymmetry (e.g., rectifying diodes) or nonlinearity (e.g., nonlinear devices). 268 

Volatile switches with large on/off ratio can also be used as selector devices. Figure BC2.2 shows a taxonomy of memory 

selector devices.269 In addition to external selector devices, some storage elements may have inherent self-selecting properties 

(e.g., intrinsic nonlinearity or self-rectification), which may enable functional crossbar arrays without external selectors.  

 

Figure BC2.2. Taxonomy of Memory Select Devices 

Since the announcement of 3D cross-point (XP) memory by Intel and Micron in 2015, threshold switch selectors have become 

one of the most actively researched selector devices. With large on/off ratio and small turn-on voltage, threshold switch 

selectors can be effective in large crossbar arrays, especially for memory elements with small on/off ratio (e.g., STT-MRAM). 

As switching devices, threshold switch selectors also face challenges in cycling endurance. Another important challenge is the 

resistance and voltage balance between the memory element and the threshold switch selector, related to the voltage 

redistribution when the memory element and the selector, one or both, start switching. Historically, diode selectors were among 

the earliest two-terminal selectors in development; however, rectifying diodes are only suitable for unipolar memory elements. 

Nonlinear selectors usually rely on large resistance contrast in exponential transport characteristics to separate on and off states. 

They tend to have better endurance, but at the same time have non-negligible or even significant on-resistance that contribute to 

higher array operating voltage and power consumption.  

Previous editions of the “Beyond-CMOS” chapter have described the selector devices in Figure BC2.2.270 No major update is 

included in the 2022 edition.  

2.5. STORAGE CLASS MEMORY  

Storage-class memory (SCM) describes a device category that combines the benefits of solid-state memory, such as high 

performance and robustness, with the archival capabilities and low cost of conventional hard-disk magnetic storage.271,272 Such 

a device requires a non-volatile memory (NVM) technology that could be manufactured at a very low cost per bit.  

A number of suitable NVM candidate technologies have long received research attention, originally under the motivation of 

readying a “replacement” for NAND Flash, should that prove necessary. Yet the scaling roadmap for NAND Flash has 

progressed steadily so far, without needing any replacement by such technologies. So long as the established commodity 

continues to scale successfully, there would seem to be little need to gamble on implementing an unproven replacement 

technology instead.  

However, while these NVM candidate technologies are still relatively unproven compared to Flash, there is a strong 

opportunity for one or more of them to find success in applications that do not involve simply “replacing” NAND Flash. 

Storage Class Memory can be thought of as the realization that many of these emerging alternative non-volatile memory 
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technologies can potentially offer significantly more than Flash, in terms of higher endurance, significantly faster performance, 

and direct-byte access capabilities. In principle, SCM could engender two entirely new and distinct levels within the memory 

and storage hierarchy. These levels would be differentiated from each other by access time, with both levels located within 

more than two orders of magnitude between the latencies of off-chip DRAM (~80 ns) and NAND Flash (20 µs). 

In July 2015, Intel and Micron jointly announced a new non-volatile memory technology, called “3D-Xpoint.” This technology 

is said to offer 1000x lower latency and 1000x higher endurance than NAND Flash, at a density that is 10x higher than 

DRAM.273,274 (Note that it is most likely that the latency referred to here is write latency rather than read latency, since NAND 

write latency is much slower than its read latency.)   3D-Xpoint technology, said to have been implemented at the 128Gbit chip 

level, is based on a two-layer stacked crossbar array, with each intersection point containing a non-volatile memory device and 

a nonlinear access device.275,276 The projected array specifications and the target applications of 3D-Xpoint memory were, for 

all intents and purposes, indistinguishable from those described for SCM. Thus we can consider 3D-Xpoint as the first 

commercial implementation of the SCM concept. 

Previous editions of the “Beyond-CMOS” chapter have detailed description of SCM types, specifications, device candidates, 

and architecture considerations. No major update is included in the 2022 edition. 

 

3. EMERGING LOGIC AND ALTERNATIVE INFORMATION PROCESSING 

DEVICES 

3.1. OVERVIEW 

Recent developments in the global semiconductor industry, particularly as documented in the More Moore chapter of this 

Roadmap, suggest that there is strong technical life in the near future maturation of devices such as lateral and vertical gate-all-

around (GAA) transistors for extending Moore’s Law. In this chapter, historically, the options for devices beyond conventiona l 

silicon transistors have been tracked, under the assumption that of the wide variety of options under research, some gradual 

winnowing and maturation of these devices to commercialization would manifest. Along such lines, this chapter categorized 

these options in three classes: (1) devices for CMOS extension, (2) charge-based devices beyond CMOS, and (3) non-charge-

based or alternative information processing devices. 

As the end-stage roadmap for conventional silicon-based CMOS becomes clearer, the focus of this section likewise becomes 

more refined and just two classes are considered: (1) CMOS extension devices consisting of a small set of candidates that might 

be viable for industrial incorporation at the end of the CMOS roadmap; and (2) Beyond CMOS devices that are primarily 

research-grade in their maturity but depart in significant and novel ways from CMOS in their behavior or performance. 

The CMOS extension candidates include carbon-nanotube devices, 2D material channel FETs, and tunneling transistors. The 

following section provides a detailed review of present status and prospects for each. The section after provides a short synopsis 

of recent results for the wider variety of novel research candidates. 

Table BC3.1 Beyond CMOS Devices for Logic and Computing 

 

3.2. DEVICES FOR CMOS EXTENSION  

3.2.1. CARBON NANOTUBE FETS  

For many researchers, the search for an ideal semiconductor to be used in FETs succeeded when single-walled carbon 

nanotubes (CNTs) were first shown to yield promising devices over twenty years ago. Owing to their naturally ultrathin body 

(~1 nm diameter cylinders of hexagonally bonded carbon atoms), superb electron and hole transport properties, and reasonable 

energy gap of ~0.6 – 0.8 eV, CNTs offer solutions in most of the areas that other semiconductors fundamentally fail when 

scaled to the sub-10 nm dimensional scale. CNT FETs operate as Schottky barrier transistors with nearly transparent barriers to 

carrier injection achieved for both n- and p-type transport. They are intrinsic semiconductors and cannot be doped in the 

traditional sense; hence, no inversion layers of charge form to allow current flow. Rather, the gate field lowers the energy 

barrier in the CNT channel to allow for carriers to be injected from the metal contacts. The most prominent advantages of CNT 

FETs over other options for aggressively scaled devices are the room temperature ballistic transport of charge carriers, the 

reasonable energy gap, the demonstrated potential to yield high performance at low operating voltage, and scalability to sub-10 

nm dimensions with minimal short channel effects. 
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In the past several years, significant advances have been made in understanding and enhancing device performance in CNT 

FETs. These include (1) realizing end-bonded contacts having an effective contact length of 0 nm with reasonable 

performance,277 (2) detailing the impact of contact scalability in CNT FETs,278 (3) maintaining performance as the channel 

length is scaled down to 9 nm without observing short channel effects, 279  (4) fabricating complementary gate-all-around 

FETs,280 (5) fabricating an FET with an intrinsic fT of 153 GHz,281 (6) fabricating CMOS inverters and pass-transistor logic 

operating at 0.4 V with a non-doped CNT, 282  (7) fabricating a carbon nanotube computer composed of 178 FETs, 283 

(8) progress towards reducing the variability in CNT FETs,284 (9) understanding origins of hysteresis,285 and (10) fabricating 

CNT FETs with ON-current of 0.5 mA/µm.286 

In addition to improvements at the device level, continuous progress has been achieved toward overcoming the dominant 

material challenges,287 including the need to achieve purified and sorted semiconducting CNTs with a relatively uniform 

diameter distribution and then position the CNTs into aligned, closely packed arrays with consistent pitch. With a target purity 

of 99.9999% semiconducting CNTs and placement density of >125 CNTs/µm (<8 nm pitch), much work still remains. 

However, it is important to note that progress continues to be steady and without fundamental obstacles barring these goals 

from being realized. There remains a need for further research toward improving other device-level aspects, including further 

reduction of contact effects at small contact lengths, demonstrated reduction in variability, improved control of gate dielectric 

interfaces and properties, and the experimental study of devices and circuits fabricated using the most scaled and relevant 

device structures and materials. In short, much work remains for CNT FETs, but they have some of the most substantial (and 

already demonstrated) potential in high-performance, low-voltage, sub-10 nm scaled transistor applications.  

3.2.2. 2D MATERIAL CHANNEL FETS 

Two-dimensional (2D) semiconductors such as certain transition metal dichalcogenides (TMDs) are promising candidates as 

future channel materials in field-effect transistors (FETs) for very large-scale integration (VLSI). Since their structure does not 

require the formation of a three-dimensional crystal, ultra-thin body thicknesses (tbody) of sub-1nm are achievable in monolayer 

TMDs without dangling bonds in principle. At these dimensions, semiconductors as MoS2, WS2, MoSe2, and WSe2 exhibit 

bandgaps of 1.6 to 2eV288 as desirable for achieving low currents in the device off-state. Mobilities are consistently extracted in 

the range of 20 to 60cm2/Vs at room temperature from devices fabricated on traditional oxide substrates,289,290 while higher 

mobilities are predicted assuming limited scattering induced by phonon and defects.291  Note that some very high reported 

mobilities can be a result of using “incorrect” extraction methods as discussed in reference.292 Considering the body thickness, 

these are outstanding transport properties that are unachievable in any three-dimensional (3D) crystal thinned to these 

dimensions. At the same time the ultra-thin body allows for most aggressive channel length scaling, since electrostatic gate 

control benefits not only from EOT scaling but also the thinning of tbody. A key parameter in this context is the so-called 

geometric screening length  that describes any band bending inside the transistor channel along the source/drain direction and 

is thus a measure of how short of a gate length Lg can be achieved without introducing short-channel effects. The smaller EOT 

and tbody, the smaller  and the more aggressively Lg can be scaled. Moreover, it is the same characteristic length scale  that 

defines the band bending at the metal-to-TMD interface, i.e., Schottky barriers (SBs) in the source/drain contact region, in this 

way impacting the contact resistance in device structures without a sophisticated doping profile. Last, it is again this small  

that allows for the introduction of novel device concepts such a 2D based tunneling field-effect transistors (TFETs) as discussed 

below. 

TMDs, in general, are characterized by the chemical formula MX2, where M is a transition metal element and X is a chalcogen. 

They can be metallic, half-metallic, semiconducting, or superconducting depending on their compositions. The four above 

mentioned TMDs—MoS2, WS2, MoSe2, and WSe2—are the most popular semiconductors explored for transistor applications. 

A field-effect transistor (FET) from a monolayer (ML) molybdenum disulfide, MoS2, was the first TMD FET demonstrated in 

2011.293 The key advantage over graphene is the presence of a bandgap, without the need to create the same through formation 

of nanoribbons that are notoriously hard to fabricate reproducibly, show typically substantial mobility degradation and allow 

only for the opening of moderate bandgaps.294,295,296 Moreover, similar to carbon nanotubes, slightly different ribbon cuts can 

result in metallic or semiconducting behavior making this approach questionable for technologically relevant applications. 

Electrical properties of semiconducting TMDs depend on the number of layers due to quantum confinement effects and changes 

in symmetry. For example, ML MoS2 has a direct band gap of 1.9 eV, while bulk MoS2 exhibits an indirect bandgap of 1.2 

eV.297 While the first ML TMD FET demonstrated by Radisavljevic et al.293 from exfoliated MoS2 showed a large on/off 

current ratio (~108) and good subthreshold swing (74 mV/decade) for a channel length of Lg=1.5m and a gate dielectric film 

thickness of 30 nm HfO2, a lot studies have focused on exploring transport properties of few-layer TMDs. Promising 

performance has been reported in more aggressively scaled few-layer TMD devices298,299 and highlights the true scaling 

opportunities that TMDs offer. In fact, Desai et al. fabricated a bi-layer MoS2-FET using a CNT with 1nm diameter as a gate.298 

For a ZrO2 gate dielectric thickness of 5.8nm, an on/off current ratio ~106 and a subthreshold swing (SS) of 65 mV/decade were 

obtained, respectively. Note that due to fringing fields, a significant portion ~40 nm in length of the MoS2 channel is impacted 
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by the nanotube gate in the device off-state, aiding in achieving the aforementioned low SS value. Encouraging results in terms 

of scaling behavior were also reported by Pang et al. using few-layer WS2 as the channel material in double-gated TMD FETs 

with channel lengths down to 40 nm.299 In their case the double gate consisted of an Al2O3/HfO2 (2.5 nm/5.5 nm) as top gate 

dielectric and HfO2 (2.8 nm) as bottom gate dielectric, allowing to achieve record high on-currents in excess of 600 A/m at 

drain bias of Vds=1V and overdrive of Vgs-Vth=2V. While much work has been done on multi-layer TMD transistors due to 

higher achievable mobilities,300 it is ultimately essential to focus on ML TMD FETs to benefit from the above discussed -

scaling to the maximum extent. Some emerging work on ML devices will be discussed below. 

While both of the above materials, i.e., MoS2 and WS2 exhibit n-type characteristics under typical gate field conditions due to a 

much preferred line-up of the source/drain metal Fermi levels with the conduction band edge, indeed WSe2 allows for hole 

injection at sufficiently negative gate voltages due to a near mid-gap line-up of the source/drain metal Fermi levels.301 This 

effect is not related to doping, but to the specifics of electron and/or hole injection from the contacts. The actual doping level 

determines the threshold voltage of the devices, as in any conventional transistor, but the absence of the so-called hole-branch 

in MoS2 and WS2 Schottky barrier (SB) FETs is a result of the suppressed hole injection from the source/drain contacts. This 

emphasizes the need to understand and control source/drain contacts to the TMD channel, which is key to lowering contact 

resistances in TMD FETs to unravel their intrinsic performance specs. Due to limited access to reliable doping approaches for 

TMDs, particular attention has been paid to engineering metal source/drain contacts to improve the current injection. Bismuth 

has recently been reported as enabling ~mA/m on-currents at drain voltages of around 1V.302 More work is needed to 

understand how to unlock the intrinsic channel properties, employing improved contact engineering schemes. 

Another important finding in the context of TMD FET performance is related to their sensitivity to the exact environmental 

conditions. This is a natural result of the fact that TMD FETs in essence only consist of interfaces. It has been reported that 

scattering of charge carriers in the TMD channel with remote impurities via Coulomb interaction can result in a thickness 

dependent mobility,290,303 i.e., a decrease of mobility () for thinner tbody. It has also been pointed out that while on one hand 

improved screening is expected to suppress impurity scattering in gate stacks that include high-κ dielectrics,304 on the other 

hand the same high-κ material has a detrimental impact on the TMD mobility through the interaction between soft phonon 

modes of the dielectric and charge carriers in the TMD channel.291 Controlling the environmental impact and the interaction 

between charges in the TMD with the surrounding is thus of utmost importance. Note that the above statement about  being a 

function of tbody should not be misinterpreted as if TMD FETs with a thicker body are preferred. The ultimate benefit of TMD 

FETs is related to their scalability, as discussed above, making monolayer devices undeniably is the favorable choice. 

Therefore, the goal should be to explore suitable gate stacks, including gate dielectrics, for monolayer TMD FETs that result in 

the most desirable transport in terms of reduced scattering inside the channel. 

Most work on TMD FETs has been focusing on demonstrating either high on-state performance or good control of the off-state 

by employing devices with a long channel and/or thick gate dielectric. The argument is that extracting important intrinsic 

properties, such as mobility, allows projecting the performance of scaled devices. This argument, however, is only valid in a 

very limited sense. Contact effects cannot be accurately extracted in very long channel devices, while being ultimately limiting 

the device performance of ultra-scaled devices. Moreover, metal source/drain contacts that result in the formation of SBs at the 

metal/TMD interface do not give rise to a constant series resistance, since most back-gated device geometries impact the SB 

thickness that exponentially controls the current injection when scanning the gate voltage, while modulating the channel 

simultaneously. This in turn can prevent the correct extraction of intrinsic properties such as the carrier concentration in the 

channel and its mobility unless scaling of devices is utilized to clearly distinguish between contact and channel effects. Most 

importantly, short-channel effects cannot be studied unless both channel lengths and dielectric film thicknesses are properly 

scaled. These are just a few reasons why there is the urgent need for more work on scaled devices, since making predictions 

based on devices with long channels and/or thick gate dielectrics is likely to be misleading. It is the full device and circuits from 

the same that needs to be studied, since TMD FETs are not behaving as conventional CMOS devices. 

This leads to another important topic, namely the need for both, n-type and p-type transistors of similar performance from 

TMDs —or ideally one type of TMD. Since substitutional doping through growth processes to achieve degenerate doping is not 

yet available, alternative approaches such as “charge transfer doping” have been employed to achieve e.g., n-doping in MoS2 

using benzyl viologen (BV) molecules305 and p-doping in WSe2 using MoO3,306 WOx,307 NO2 308 or NO.309 While some of the 

above examples demonstrated a significantly enhanced on-current level due to improved contact resistances and shifted 

threshold voltages, the degenerate doping levels achieved resulted in the absence of a significant gate voltage response of the 

channel, i.e., the devices could not be turned off. It should be noted that unipolar transistor operation could be enabled if doping 

is only used in the contact regions rather than the entire TMD channel.305,308 Last, it should be noted that it is very desirable to 

extend the scaled device approach, as described in the last paragraph, towards doped scaled TMD FETs with a particular focus 

on threshold voltage control and additional attention on dopants’ air stability.309 



Emerging Logic and Alternative Information Processing Devices  24 

 

THE INTERNATIONAL ROADMAP FOR DEVICES AND SYSTEMS: 2023 

COPYRIGHT © 2023 IEEE. ALL RIGHTS RESERVED. 

The above section on doping of TMDs and two-dimensional (2D) materials obviously aims at developing CMOS type circuitry 

from 2D materials. As early as 2011, experimental circuit demonstrations310 accompanied the work on improving individual 

device characteristics. Interestingly, due to the relative ease of fabricating MoS2 transistors at a sufficiently large scale, most 

circuits utilize exclusively n-type MoS2 FETs311,312 and only very limited work has truly focused on CMOS integration based on 

n-type MoS2 and p-type black phosphorus (BP)313 or n-type MoS2 FETs and p-type WSe2 FETs.314 Using the same 2D material 

to create both, n-type and p-type devices and assemble the same into a circuit has only been accomplished so far using WSe2 315 

and BP.316,317 

Beyond the work that focuses on TMD-based FETs, 2D materials have also been employed to demonstrate the feasibility of 

novel device concepts, in particular focusing on steep slope devices. Using MoS2 as the active channel material, germanium as 

the source electrode and a solid polymer electrolyte as the gate, tunneling field-effect transistor (TFET) operation with a 

subthreshold swing as small as ~31mV/dec over four decades of drain current at room temperature was demonstrated.318 In 

another approach, the so-called Dirac source (DS) FET demonstrated a subthreshold swing of ~40mV/dec employing a 2D 

graphene injector and a carbon nanotube.319 The operation principle is similar to a TFET but uses graphene without a bandgap 

to create a low-pass filter by making use of graphene’s low density of states (DOS) at the Dirac point. Another interesting 

device concept employing 2D materials with multiple gates demonstrated the opportunity to reconfigure the same device into 

an n-MOSFET, p-MOSFET, n-TFET and p-TFET,320,321 highlighting the unique device level opportunities that 2D materials 

offer in comparison to conventional, silicon-based CMOS. 

Growth technology of TMDs is also in progress. In fact, the synthesis of TMDC film dates back to the 1980’s, when the growth 

was performed with van der Waals epitaxy.322 More recently, Lee et al. demonstrated CVD growth of MoS2 using MoO3 and S 

powder as precursors.323 ,324 The growth temperature was 650˚C. Single-crystal monolayer MoS2 flakes were successfully 

obtained. This method was further improved and single-crystal MoS2 flakes as large as 120 μm in lateral size were obtained.325 

There have been a quite a few reports using similar methods for synthesizing TMDCs, including MoSe2,326 WS2,323,327 and 

WSe2.328 However, uniform growth over a large area is not easy using this powder-based CVD technique.  In 2015, Kang et al. 

succeeded in large area growth of MoS2 by MOCVD using Mo(CO)6 and (C2H5)2S as precursors.329 The electron mobility of 

MoS2 in this case was 30 cm2/Vs at room temperature. In general, mobility of CVD MoS2 is lower than that of exfoliated MoS2, 

which is still an important issue to address. Furthermore, MoS2 deposition by using sputtering is also in progress.330,331,332 The 

sputtering method is scalable, but it is still difficult to obtain film with a quality as high as that by MOCVD. 

3.2.3. TUNNEL FETS 

Tunneling Field Effect Transistors (TFETs) have the potential to achieve a low operating voltage by overcoming the thermally 

limited subthreshold swing voltage of 60 mV/decade by utilizing tunneling as a switching mechanism.333,334,335 In its simplest 

form, a TFET is a gated, reverse-biased p-i-n diode with a gate controlled intrinsic channel. There are two mechanisms that can 

be used to achieve a low voltage turn on. The gate voltage can be used to modulate the thickness of the tunneling barrier at the 

source channel junction and thus modulate the tunneling probability.336,337,338,339 The thickness of the tunneling barrier is 

controlled by changing the electric field in the tunneling junction. Alternatively, it is possible to use energy filtering or density 

of states switching: if the conduction and valence band do not overlap at the tunneling junction, no current can flow; once they 

do overlap, current can flow. Simulations have predicted arbitrarily steep subthreshold swings when relying on density of states 

switching as the current is abruptly cutoff when the conduction band and valence band no longer overlap.335 If phonons or short 

channel lengths are accounted for, simulated subthreshold swings on the order of 20–30 mV/decade are typical.340 It is possible 

to use the tunneling switching mechanisms in series with the standard MOSFET thermal switching mechanism to get an overall 

subthreshold swing that is steeper than 60 mV/decade when no individual mechanism is steeper than 60 mV/decade.341 The best 

experimental results to date have relied on a combination of thermal switching and density of states switching.342.So far, the 

experimental results are far worse than simulated device characteristics. The review by Lu and Seabaugh333 shows a 

comprehensive benchmarking of published experimental results prior to 2014. The benchmarking shows two problems with 

TFETs as a MOSFET replacement: 1) Devices are unable to achieve SS <60 mV/decade over a large range or at useful current 

levels and 2) The on-state current is too low for reasonable performance. 

The review shows 14 reports of subthreshold swings below 60 mV/decade, and a few additional results have been published 

since. Most of the results are for group-IV materials such as Si,338,343,344,345,346,347 strained SiGe,348 Si/Ge,349 and strained Ge.350 

Nanowire III-V TFETs have shown even steeper swings. An InP/GaAs heterojunction351 has shown 30 mV/decade at 1 pA/μm. 

The steepest result ever reported is in a Si/InAs heterojunction352 of approximately 20 mV/decade at 0.1 pA/μm. However, 

there are only a few data points defining this result. Even for low power applications, at least 1–10 μA/μm is needed.353 

Recently, a promising InAs/GaAsSb/GaSb nanowire heterostructure TFET with a 48 mV/decade SS at 67 nA/μm and an I60 

(current at 60 mV/decade) of 0.31 μA/μm was demonstrated.342 
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Researchers attempting to achieve higher on-current TFETs have traditionally relied on reducing the effective mass by using 

III-V’s and reducing effective bandgap by using a heterostructure. While this has increased the current, the subthreshold swings 

and off currents have gotten worse. The increase in off-state current and subthreshold swing needs to be decoupled from the 

increase in on-state current. Unfortunately, this is a fundamental tradeoff when modulating the thickness of the tunneling 

barrier:334 barrier thickness modulation only gives a step subthreshold swing at low current densities. 

An ideal density of states (DOS) switch would switch abruptly from zero-conductance to the desired on-conductance, thus 

displaying zero subthreshold swing voltage.354 Practically, the band edges are not perfectly sharp, so there is a finite density of 

states extending into the band gap. Optical measurements of intrinsic GaAs imply a band edge steepness of 17 meV/decade.355 

However, the electrically measured joint DOS in diodes has generally indicated a steepness >90 mV/decade.356 This broadening 

is likely due to the spatial inhomogeneity and on heavy doping that appears in real devices. Effectively, there are many distinct 

channel thresholds in a macroscopic device, leading to threshold broadening. Fortunately, it has been experimentally 

demonstrated that a band edge worse than 60 mV/decade can be combined with a thermal switching mechanism to give an 

overall subthreshold swing better than 60 mV/decade.341 

TFETs are reverse-biased diodes hence are subject to generation in the depletion region. These generation events include but 

are not limited to bulk and interface trap-assisted Shockley-Read-Hall (SRH)357,358,359 and spontaneous and Auger generation.360 

Calculations based upon these mechanisms show that these significantly degrade the subthreshold swing and increase the 

leakage currents but do not prevent TFETs from achieving sub-60 mV/decade subthreshold swing. Material defects and gate 

interface traps make these effects worse and result in worse band edges. 

To overcome these challenges, better material perfection than ever before is needed. Every defect or dangling bond can create a 

trap that ruins the band edge or creates a parallel conduction path. The defects due to doping can be eliminated by 

electrostatically inducing carriers. Proof of concept devices can be made by making the device a few nanometers large so that 

there is a low probability of having a trap within the device. 2D transition metal dichalcogenides (TMD) heterostructures 

potentially have better electrostatic control and lower defects as there are ideally no dangling bonds at the semiconductor oxide 

interface. 

3.3. BEYOND-CMOS DEVICES 

3.3.1. SPIN FET AND SPIN MOSFET TRANSISTORS 

Spin-transistors are classified as “non-conventional charge-based extended CMOS devices,”361 and can be further divided into 

two categories: the spin-FETs proposed by Datta and Das362 and spin-MOSFETs proposed by Sugahara and Tanaka.363 The 

structures of both types of spin transistors consist of a ferromagnetic source and a ferromagnetic drain, which act as a spin 

injector and a detector, respectively. Although the devices have similar structures, they have quite different operating 

principles.361,364 In spin-MOSFETs, the gate has the same current switching function as in ordinary transistors, whereas in the 

spin-FETs, the gate acts to control the spin direction via the Rashba spin-orbit interaction. Both types of devices behave as a 

transistor and function as a magnetoresistive device. The important features of spin transistors are that they allow a variable 

current to be controlled by the magnetization configuration of the ferromagnetic electrodes (spin-MOSFETs) or the spin 

direction of the carriers (spin-FETs), and they offer the capability for non-volatile information storage using the magnetization 

configurations. These features are very useful for energy-efficient, low-power circuit architectures that cannot be achieved by 

ordinary CMOS circuits. Non-volatile logic and reconfigurable logic circuits have been proposed using the spin-MOSFET and 

the pseudo-spin-MOSFETs, which are suitable for power-gating systems with low static energy.364,365,366,367,368,369,370  

The full operation suggested for spin-FETs364,371 and spin-MOSFETs364,372,373,374,375 have not yet been experimentally verified. 

For realizing fully functional spin transistors, some important progress in the underlying technologies such as electrical spin 

injection, spin detection, and spin manipulation in semiconductors (SCs) should be required.376,377,378 Lots of theories379,380,381,382 

have predicted that the insertion of a tunnel barrier between the ferromagnet (FM) and SC is a promising method for highly 

efficient electrical spin injection and detection. In particular, large spin signals induced by the efficient spin injection and 

detection were observed in Si-based lateral spin-valve devices with FM/MgO tunnel-barrier contacts even at room 

temperature.383,384,385,386 Also, by using a back-gated device structure with FM/MgO tunnel-barrier contacts,373,374,375 a basic read 

operation of Si-spin-MOSFETs was demonstrated at room temperature. These are important developments for Si-based spin-

MOSFETs. However, if an insulator tunnel barrier such as MgO was utilized, the large parasitic resistance can cause the 

obstacle for the development of source and drain structures in the spin transistors. Another key development for highly efficient 

spin injection/detection in SCs is half-metallic FM contacts. Thus far, electrical spin injection, transport, and detection in SCs 

without using insulator tunnel barriers have been demonstrated in lateral spin-valve devices with Co2-Heusler alloy/SC 

Schottky-tunnel-barrier contacts.387,388,389,390,391To reduce the value of RA (interface resistance area product) at the source and 

drain structures in spin-MOSFETs, the delta-doping of dopant impurities near the Co2-Heusler alloy/Ge Schottky-tunnel-

barrier392 has been demonstrated, leading to the room-temperature spin transport393 including local magnetoresistance effect in 
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Ge-based lateral devices with RA values of less than 0.2 km2. 394  Recently, the quality of the Co2-Heusler alloy/Ge 

heterointerface was significantly improved by inserting Fe atomic layers between Co2-Heusler alloy and Ge.395,396 This leads to 

the two-terminal magnetoresistance (MR) ratios of more than 0.1 % at room temperature even in the Ge-based lateral spin-

valve devices.396 For enhancing the MR ratio in Ge-based spin-MOSFET structures, it is essential to further optimize the 

formation of L21-ordered Co2-Heusler alloy/Ge Schottky-tunnel contacts and to reduce the spin relaxation in the Ge channel.397 

Alternative approaches for realizing spin-MOSFETs have been proposed.364,369,372,398,399 Pseudo-spin-MOSFETs are circuits that 

reproduce the functions of spin-MOSFETs using an ordinary MOSFET and a magnetic tunnel junction (MTJ) that is connected 

to the MOSFET in a negative feedback configuration. Although pseudo-spin-MOSFETs offer the same functionality as spin 

transistors, such as the ability to drive variable current, pseudo-spin-MOSFETs have larger resistance than spin-FETs or spin-

MOSFETs.  

For spin manipulation in SCs, channel materials with a strong spin-orbit interaction, such as InGaAs, InAs and InSb, are 

required362 in order to sufficiently induce the Rashba spin-orbit interaction by an electric gate voltage. Using InAs400 and 

InGaAs401 2DEG heterostructures with and without FM spin injector and detector, respectively, the spin manipulation was 

demonstrated by the electric field, meaning the operation of a spin-FET. However, the operation temperature was limited to the 

low temperature less than 40 K. The experimental proof of electrical spin injection, detection and manipulation in SCs with the 

strong spin-orbit interaction above room temperature is needed to create spin-FETs. Very recently, it was found that the Rashba 

spin-orbit interaction is induced by strong electric fields applied to the Si-MOS interfaces at room temperature.402 For realizing 

spin-FETs using Si, the changes in MR ratios or magneto-current ratios in a Si-MOS structure should be explored at room 

temperature. 

3.3.2. NEGATIVE GATE CAPACITANCE FET 

Salahuddin and Datta originally proposed403 that, based upon the energy landscape of ferroelectric capacitors, it should be 

possible to implement a step-up voltage transformer that will amplify the gate voltage of a MOSFET. This would be 

accomplished by replacing the standard insulator in the gate stack with a ferroelectric insulator of appropriate thickness. The 

resulting device is called a negative gate capacitance FET or NCFET. The gate operation in this device would lead to 

subthreshold swing (STS) lower than 60 mV/decade and might enable low voltage/low power operation. The main advantage of 

such a device404 is that it is a relatively straightforward replacement of conventional FETs. Thus, high Ion levels similar to 

advanced CMOS would be achievable with lower voltages. An early experimental attempt to demonstrate a low-STS NCFET, 

based on a P(VDF-TrFE)/SiO2 organic ferroelectric gate stack, was reported 405  in 2008, and subsequently 406  in a more 

controlled structure in 2010. These experiments established the proof of concept of sub-60 mV/decade operation using the 

principle of negative capacitance. 

In addition to these experiments using polymer-based ferroelectrics, negative differential capacitance was demonstrated in a 

crystalline capacitor stack.407 Essentially, it was demonstrated that in a bi-layer of dielectric Strontium Titanate (SrTiO3: STO) 

and Lead Zirconate Titanate (PbxZr1-xTiO3: PZT), the total capacitance is larger than what it would be for just the STO of the 

same thickness as used in the bi-layer. This necessarily demonstrates the stabilization of PZT at a state of negative differential 

capacitance. More recently, in a single PZT capacitor, a direct measurement of negative capacitance was demonstrated.408 That 

work determined that when a ferroelectric capacitor is pulsed with an input voltage, it shows an ‘inductance-like’ discharging in 

addition to a capacitive charging. 

As a recent significant result, it is now possible to grow ferroelectric materials using the atomic layer deposition process (ALD) 

by doping the frequently used gate dielectric HfO2 by constituents such as Zr, Al or Si.409 Using this doped Hf based ALD 

ferroelectric, a number of experiments have demonstrated the negative capacitance effect.410,411,412  For example, by using 

HfZrO2 as a gate dielectric, sub-60 mV/decade STS was demonstrated412 in finFETs with Lg=30 nm for both nFET and pFET 

structures. In the last two years, multiple papers have reported this effect for various material systems and channel lengths. 

Significant among them is the demonstration by GlobalFoundries of NCFETs in their 14 nm finFET technology, with improved 

subthreshold swing, lower OFF current and lower active power and ring oscillators running at GHz speed.413 

3.3.3. NEMS SWITCH 

Nano-Electro-Mechanical (NEM) switches use electrostatic force to mechanically actuate a movable structure to make or break 

physical contact between current-conducting source and drain electrodes. When the electrodes are separated physically by an 

air gap, no current flows across the gap, resulting in zero OFF-state current.  The NEM switch undergoes an abrupt change in 

current conduction ability between non-contacting and contacting states, with nearly zero subthreshold swing.414 While zero 

OFF-state current provides for zero standby power dissipation, zero subthreshold swing enables very low operating voltages for 

low dynamic power dissipation as well. Moreover, a NEM switch can be operated with either positive or negative voltage 

polarity due to the ambipolar nature of the electrostatic force, so that an electrostatically actuated NEM relay can be configured 
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to turn on either with increasing control (gate) voltage or with decreasing gate voltage and can serve as either a pull-down 

device (passing a low voltage – ground – from the source to the drain, i.e., discharging the voltage at the drain) or a pull-up 

device (passing a high voltage – VDD – from the source to the drain, i.e., charging the voltage at the drain).415 Additional 

advantages of mechanical devices include robust operation across a wide temperature range, down to cryogenic temperatures,416 

and immunity to ionizing radiation. NEM switches can be monolithically integrated with CMOS circuitry by a modular post-

CMOS fabrication process with relatively low thermal budget.417 Since state-of-the-art CMOS technology incorporates air-

gapped interconnects,418 NEM switches can be implemented using multiple interconnect layers formed in the back-end-of-line 

(BEOL) process.419 Potential applications for hybrid NEMS-CMOS technology include CMOS power gating,420 configuration 

of FPGAs, 421  non-volatile back-up storage of information in SRAM and CAM cells,419 and energy-efficient, fast and 

reconfigurable look-up tables.422 

Conventional planar processing techniques (i.e., thin-film deposition, lithography and etch processes) can be employed to 

fabricate the conducting electrodes of a mechanical switch. The air-gaps between electrodes are formed with a final “release” 

etch step in which a sacrificial material such as silicon dioxide, photoresist, polyimide or silicon is selectively removed. The 

switching delay and operating voltage of a NEM switch can be reduced by scaling down the size of these air-gaps. The smallest 

air-gap demonstrated to date for a functional NEM structure fabricated using a top-down approach is 4 nm, resulting in an 

actuation voltage of approximately 0.4 V.423 As expected, it exhibited very low OFF-state current and sub-threshold swing; 

however, it is only a 2-terminal device, not suitable for logic switch application. SiC nanowires have been used as the movable 

structure for NEM switches that are suitable for high-temperature operation. Functioning 2-terminal SiC switches with air-gaps 

as small as 10 nm and switching voltage as low as 1V have been demonstrated.424 3-terminal devices and corresponding logic 

gates also were demonstrated.425 Piezoelectric materials have been incorporated in NEM devices to enable sub-1V switching426. 

The operating speed of a NEM switch is much slower than that of a transistor because it is dominated by mechanical delay 

related to the physical motion of the movable structure rather than the electrical (charging/discharging) delay; therefore an 

optimized relay-based IC design should arrange for all mechanical movements to happen simultaneously, so that the delay per 

operation is essentially one mechanical delay.427  For a pass-gate circuit topology, multiple switches are connected together in 

series to drive the output signal. This means that the source voltage can vary between the reference voltage (ground) and the 

supply voltage (VDD). For proper pass-gate circuit operation, the state of the switch cannot be dependent on the source voltage; 

therefore a fourth electrode is necessary to provide a constant reference voltage, such that the voltage applied between the 

control (gate) electrode and the reference (body) electrode determines the state of the switch, i.e., whether a current path is 

established between the source and drain electrodes.427 The contact and actuation air-gaps can be reduced by biasing the body 

electrode to reduce the magnitude of the gate voltage required to switch the device ON/OFF. Moreover, a constant-field scaling 

methodology can be applied to miniaturize NEM switches for reduced footprint, switching delay and switching energy.428  With 

the aid of body biasing, the minimum switching energy for a nanoscale relay is anticipated to be on the order of 10 aJ, which 

compares well against the switching energy for an ultimately scaled MOSFET. 429 , 430  Piezoelectric NEM devices have 

demonstrated 10 mV switching operation using body bias, providing for very low energy dissipation per switching cycle (23 

aJ), and an extremely small subthreshold slope (0.013 mV/decade)426. A variety of relay-based computational and memory 

building blocks have been experimentally demonstrated to date.431,432 

The prospective system-level benefits of mechanical logic have been analyzed by performing simulation-based assessments of 

VLSI circuit blocks implemented with NEM switches. These indicate that relays can provide for more than 10x reduction in 

energy per operation as compared with MOSFETs, and can reach clock speeds in the GHz regime.433 Thus, a major potential 

advantage of NEM switch technology is improved energy efficiency. Moreover, the contact adhesive force and structural 

stiffness can be engineered to achieve bi-stable operation, which makes mechanical switches attractive for embedded non-

volatile memory applications.434 Recently hybrid CMOS-NEMS circuits have been demonstrated, with non-volatile NEM 

switches operating at the same VDD as for the CMOS circuitry.435 The BEOL metallic layers used to form interconnects in a 

conventional CMOS process can be leveraged to implement compact NV-NEM switches for dynamically reconfigurable circuit 

functionality 436 . Recently, monolithically integrated hybrid CMOS-NEM circuitry have been fabricated and circuit 

functionalities have been demonstrated utilizing BEOL NEM switches. Arrays of non-volatile NEM switches have been 

leveraged to demonstrate look-up table functionality437 and data search operation.438 Reprogrammable NEM switches, with air 

gaps as small as 32 nm, have been fabricated using a standard 16-nm CMOS manufacturing process.438 

For all of the aforementioned applications, the NEM switches need to operate reliably and consistently for at least 109 cycles. 

Due to the extremely small mass of the movable electrode (less than 1 ng), neither gravitational acceleration nor mechanical 

vibration substantially affects their operation. Structural fatigue or creep can be easily avoided by designing the movable 

structure/anchor such that the maximum induced strain is well below the yield strength. However, permanent stiction can be a 

mode of device failure: for soft electrode materials such as gold and platinum, Joule heating at the contacting asperities can lead 

to atomic diffusion (welding). This issue can be mitigated by using a refractory electrode material such as tungsten to minimize 
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contact wear and by reducing the peak voltage difference between the source and drain electrodes (VDD) when they are in 

contact. NEM switches with tungsten electrodes have been demonstrated to have endurance up to 1 billion ON/OFF cycles at 

2.5 Volts for a relatively large load capacitance of 300 pF (i.e., exaggerated electrical delay), and endurance exceeding 1016 

ON/OFF cycles is projected for voltages below 1 Volt and load capacitance below 1 pF. 439 The remaining reliability challenge 

for NEM logic switches is degradation (dramatic increase) of on-state resistance due to electrode surface oxidation or the 

formation of friction polymers over the lifetime of device operation. Alternative contacting electrode materials such as 

Ru/RuO2 and/or hermetic packaging are potential solutions to this issue.  

Adhesive force between the contacting electrodes dictates the minimum required stiffness of the movable structure, which in 

turn determines the minimum gate-to-body voltage required to switch the NEM relay. The adhesion energy is determined by 

metallic bonding (at the contacting asperities) and by van der Waals force (in the non-contacting regions of the electrodes). 

Self-assembled molecular (SAM) coating of hydrophobic materials has been demonstrated to reduce the adhesive force and 

thereby enable switching operation at lower gate voltage.440 Sub-50 mV operation of relay integrated circuits demonstrating 

OR, AND, and XOR gate functionality have been demonstrated with body-biased SAM-coated NEM switches.441 Operation of 

NEM switches and integrated circuits at temperatures down to 4K were demonstrated  recently for the first time.442 Due to 

reduced adhesion energy and elimination of contact oxidation, relays can be operated reliably with voltages as low as 25 mV 

for more than 108 cycles at cryogenic temperatures, showing promise for monolithic integration of multiplexing control 

circuitry with qubits. Most recently, coupled MEM relays have been proposed to implement an Ising machine utilizing the bias-

dependent oscillatory behavior of the relays.443In conclusion, the negligible OFF-state current and ultra-low-voltage operation 

capability of NEM switches make them a compelling option for ultra-low-power digital computing applications such as the 

Internet of Things, particularly where resilience to extreme temperatures and/or immunity to radiation are required. 

Furthermore, hybrid CMOS-NEM technology shows promise for enhanced chip functionality, e.g., with dynamically 

reconfigurable interconnects. Remaining challenges to realizing the promise of mechanical computing include materials and 

process optimization to achieve stably low contact resistance with minimal contact adhesive force. Further work is also needed 

to integrate NEM switches on the most advanced CMOS platforms and improve their reliability for future IoT device 

applications of hybrid CMOS-NEM circuits.  

3.3.4. MOTT FET 

Mott field-effect transistor (Mott FET) utilizes a phase change in a correlated electron system induced by a gate as the 

fundamental switching paradigm.444,445 Mott FETs could have a similar structure as conventional semiconductor FET, with the 

semiconductor channel materials being replaced by correlated electron materials. Correlated electron materials can undergo 

Mott insulator-to-metal phase transitions under an applied electric field due to electrostatically doped carriers.446,447 Besides 

electric field excitation, the Mott phase transition can also be triggered by photo- and thermal-excitations for optical and 

thermal switches. Defects created by environmental exposure to chemicals or electrochemical reactions can also induce Mott 

transition via carrier doping. The critical threshold for inducing phase change can be tuned via stress. 

Mott FET structure has been explored with different oxide channel materials.445 Among several correlated materials that could 

be explored as channel materials for Mott FET, vanadium dioxide (VO2) has attracted much attention due the sharp metal-

insulator transition near room temperature (nearly five orders in single crystals).448 The phase transition time constant in VO2 

materials is in sub-picosecond range determined by optical pump-probe methods.449 Device modeling indicates that the VO2-

channel-based Mott FET lower bound switching time is of the order of 0.5 ps at a power dissipation of 0.1 µW.450 The 

possibility of electrochemical reactions must also be carefully examined in these proof-of-principle devices due to the 

instability of the liquid-oxide interfaces and the ease of cations in such complex oxides to change valence state. , 451, 452 On the 

other hand, unlike traditional CMOS that is volatile and digital, electrochemically gated transistors exhibit non-volatile and 

analog behaviors, which can be utilized to demonstrate synaptic transistors453 and circuits454 that mimic neural activities in the 

animal brains. Voltage induced phase transitions in two-terminal Mott switches have also been implemented to realize neuron-

like devices455 and steep-slope transistors.456 As a Mott device with purely electrostatic modulation in the solid-state base,457 the 

VO2-FET with a high-k oxide/organic hybrid dielectric gate has been proposed. 458 , 459  Their reversible as well as quick 

resistance switching upon an application of gate bias and the maximum resistance modulation at the Metal-Insulator transition 

temperature indicate the possibility of purely electrostatic field-induced metal-insulator (Mott) transition. The gate-tunable 

abrupt switching device based on a VO2 microwire integrated monolithically with a two-dimensional tungsten diselenide 

semiconductor by van der Waals stacking has been reported.460 Nanofabrication engineering has been demonstrated to enhance 

the performance of Mott FET461. The 3-dimensional Fe3O4 nanowires on the length scale of 10 nm exhibited the remarkable 

Verwey transition at about 112 K, which was found to be 6 times larger than that for the thin-film configuration.462 

Experimental challenges with correlated electron oxide Mott FETs include fundamental understanding of gate oxide-functional 

oxide interfaces and local band structure changes in the presence of electric fields. Methods to extract quantitative properties 

(such as defect density) of the interfaces are an important topic that have not been explored much to date. The relatively large 
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intrinsic carrier density in many of the Mott insulators requires the growth of ultra-thin channel materials and smooth gate 

oxide-functional oxide interfaces for optimized device performance. It is also important to understand the origin of low room-

temperature carrier mobility in these materials.446 Theoretical studies on the channel/dielectric interfacial electronic band 

structure are needed for the modeling of subthreshold behaviors of Mott FETs. Metal-insulator transition induced by resonant 

tunneling in double quantum well structures has been successfully demonstrated in strongly correlated oxides.463 Understanding 

the electronic transition mechanisms while de-coupling from structural Peierls (lattice) distortions is also of interest and 

important in the context of energy dissipation for switching.  

While the electric field-induced transitions are typically explored with Mott FET, nanoscale thermal switches with Mott 

materials could also be of substantial interest. Recent simulation studies of “ON and “OFF” times for nanoscale two-terminal 

VO2 switches indicate the possibility of sub-ns switching speeds in ultra-thin device elements in the vicinity of room 

temperature.464,465 One can, in a broader sense, visualize such correlated electron systems as ‘threshold materials’ wherein the 

conducting state can be rapidly switched by a slight external perturbation, and hence lead to applications in electron devices.466, 
467  Electronically driven transitions in perovskite-structured oxides such as rare-earth nickelates 468  with minimal lattice 

distortions would also be relevant in this regard. Three-terminal devices are being investigated using these materials and will 

likely be an area of growth. 469 , 470 , 471 , 472  SmNiO3, with its metal-insulator transition temperature near 130ºC and nearly 

hysteresis-free transition, is particular interesting due to the possibility of direct integration onto CMOS platforms. Floating 

gate transistors have recently been demonstrated on silicon.473 It has been found that non-thermal electron doping in SmNiO3 

can lead to a colossal increase in its resistivity, which has been utilized to demonstrate a solid-state proton-gated transistor with 

large ON/OFF ratio.474 Clearly, these preliminary results suggest the promise of correlated oxide semiconductors for logic 

devices, while the doping process indicates slower dynamics than possible with purely electrostatic carrier density modulation. 

The non-volatile nature of the Mott transition in 3-terminal devices suggest combining memory operations into a single device 

and could be explored further. Architectural innovations that can create new computing modalities with slower switches but at 

lower power consumption can benefit in the near term with results to date while in the longer term transistor gate stacks need to 

be studied further for these classes of emerging semiconductors. 

3.3.5. TOPOLOGICAL INSULATOR ELECTRONIC DEVICES 

Topological insulators are recently discovered materials that possess a bandgap in their interior, however the topology of their 

electronic states necessitates that the existence of gapless, conducting modes on their boundaries – one dimensional (1D) edges 

in the case of two-dimensional (2D) topological insulators, and 2D surfaces in the case of three-dimensional (3D) topological 

insulators475,476,477,478. These conducting modes are protected from backscattering by symmetry, and in the case of 1D edge 

modes of 2D topological insulators, are expected to be ballistic conductors with conductance e2/h = 38.7 μS per edge, which 

has been confirmed experimentally in several materials479,480,481. 

Systematic searches of materials databases have found that topological materials are commonplace, representing a significant 

fraction of all known materials482,483,484. Two-dimensional topological insulators have been realized with very large bandgaps of 

360 meV (Na3Bi485) and 800 meV (bismuthene486), significantly exceeding the thermal energy at room temperature (25 meV), 

which indicates that topological phenomena may be robust at room temperature in suitable materials. 

Numerous proposals have been put forward to exploit topological materials in transistor design487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 

497, 498, 499. One topological transistor design envisions switching a 2D material from topological insulator (“on” with ballistic 

edge channels) to a conventional insulator (“off”). This switching may be accomplished via electric field through several 

mechanisms such as Rashba effect488,498, staggered sublattice potential487,488,491,492, inversion symmetry breaking489, or Stark 

effect485, 490, 493, 494, 497. 

Electric field effect switching has been proposed in a number of materials including graphene488, two-dimensional Xenes (e.g., 

germanene, stanene, etc.)487,492,498, monolayer transition metal dichalcogenides in 1T’ phase494, SnTe and Pb1-xSnxSe(Te)489, 

topological semimetals such as Cd2As3 and Na3Bi485,493, and phosphorene490. Electric-field switching of the topological state 

has been demonstrated in at least one material, Na3Bi485. Other transistor proposals have focused on electric-field switching of 

tunnelling between topological edges500, or using strong disorder to produce an off state in a bulk conducting topological 

insulator495. 

An important development in 2020-2021 has been the establishment of the basis for low-voltage switching in a topological 

transistor498. For staggered honeycomb lattice topological insulators in the Xene family, electric field acts in two ways; 

inducing a staggered sublattice potential and creating a Rashba spin-orbit coupling. Both effects act to open a bandgap in the 

topological insulator. A device termed a topological quantum field-effect transistor (TQFET) exploits this combined electric 

field effect on the bandgap, which is used as the barrier to electron flow in the “off” state of the transistor. Due to the combined 

effects of sublattice potential and Rashba spin-orbit coupling on the bandgap, the TQFET can overcome Boltmann’s tyranny 

with a subthreshold swing lower than kTln10/e ≈ 60 mV/decade at room temperature. 
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In additional important development in 2020-2021 was the realization that the TQFET concept can be combined with a 

negative capacitor to further reduce the subthreshold swing. Negative capacitance (realized, for example, in a ferroelectric 

layer) in series with a positive capacitance has previously been proposed to reduce the subthreshold swing in conventional 

MOSFETs501. However, in a well-designed MOSFET in the subthreshold region (in which the gate capacitance dominates over 

stray capacitances to the channel), the gain due to negative capacitance is negligible502. This is because the negative capacitor in 

series with a positive capacitor acts to amplify the electric field in the positive capacitor at a given voltage. However, in an ideal 

conventional MOSFET in the subthreshold regime, the gate electric field is negligible as the channel electric potential follows 

that of the gate, hence the device cannot benefit from amplification of the electric field in the channel. 

A TQFET switches by a qualitatively different mechanism, applying an electric field across the insulating channel, rather than 

changing the electrostatic potential of the channel as in a MOSFET. Thus, a TQFET can benefit maximally from electric field 

amplification in a negative capacitance structure. A negative capacitance topological quantum field-effect transistor (NC-

TQFET) incorporates a stack consisting of gate electrode, ferroelectric, topological channel, ferroelectric, ground plane; with 

the ferroelectric layers having an effective negative capacitance499. The entire stack is designed to have a net positive 

capacitance to ensure absence of hysteresis and amplification of the electric field in the topological channel layer. 

Benchmarking of a hypothetical NC-TQFET using a bismuthene topological channel and La-doped HfO2 ferroelectric layers 

demonstrated a 10X reduction in switching voltage and 8X reduction in switching energy compared to a GAAFET CMOS 

LV503, with high on-current499. Further gains appear possible by using ferroelectrics with higher remnant polarization. While the 

NC-TQFET design is promising for low-voltage devices, many challenges remain to realize such a device. An appropriate 

topological channel material in the Xene family must be demonstrated experimentally and integrated with an appropriate 

ferroelectric layer of precisely controlled thickness. 

In addition to switching via electric field, topology may also be controlled by magnetic fields504,505, strain506, temperature507, or 

time-dependent electric fields (such as light)508,509, hence topological transistors have the prospect of adding additional new 

functionality for “More than Moore” devices. 

The deep connection between topological insulators and spin-orbit coupling also suggests further synergies between topological 

electronics and spin electronics. Indeed, 2D topological insulators exhibit a quantized spin Hall effect and can be used to 

produce completely polarised spin current488, of potential use in spintronics devices. Magnetic 2D topological insulators 

(quantum anomalous Hall effect) may produce perfectly spin polarised current with spin direction determined by magnetization 

direction478,510, opening new possibilities for spin transistors and non-volatile random-access memory511. Near-perfect ballistic 

conduction in the quantum anomalous Hall regime with current-induced magnetization switching at very low currents (1 nA) 

was recently demonstrated in graphene/boron nitride heterostructures 512  albeit at cryogenic temperatures. Analogous 

topological effects may be realized for other degrees of freedom such as the valley degree of freedom in materials with multiple 

conduction valleys, with analogous quantum valley Hall effects switchable by electric field513,514,515.  

3.3.6. SPIN WAVE DEVICE 

Spin Wave Device (SWD) is a type of magnetic logic devices exploiting collective spin oscillation (spin waves) for information 

transmission and processing.516,517,518,519,520 The basic elements of the SWD include: (i) magneto-electric cells (e.g., multiferroic 

elements) aimed to convert voltage pulses into the spin waves and vice versa;521,522 (ii) magnetic waveguides – spin wave buses 

for spin wave signal propagation between the magneto-electric cells,523 (iii) magnetic junctions to couple two or several 

waveguides,524 (iv) spin wave amplifiers,525 (v) phase shifters to control the phase of the propagating spin waves,526 and (vi) spin 

wave phase error correctors.527 SWD converts input voltage signals into the spin waves, computes with spin waves, and 

converts the output spin waves into the voltage signals. Computing with spin waves utilizes spin wave interference, which 

enables functional nanometer scale logic devices. Since the first proposal on spin wave logic,516 SWD concept has evolved in 

different ways encompassing volatile 528  and non-volatile,529  Boolean529,530  and non-Boolean,531  single-frequency and multi-

frequency circuits.532 The primary expected advantages of SWD over Si CMOS are the following: (i) the ability to utilize phase 

in addition to amplitude for building logic devices with a fewer number of elements than required for transistor-based approach; 

(ii) power consumption minimization by exploiting the intrinsically low energy of spin waves in ferromagnets (~10 eV) and 

antiferromagnets (~1 meV) as well as built-in non-volatile magnetic memory and magnetic reconfigurability533, and (iii) parallel 

data processing on multiple frequencies in a single core structure by exploiting each frequency as a distinct information channel. 

Micrometer-scale SWD MAJ gate has been experimentally demonstrated.534 It is based on ferromagnetic Ni81Fe19 structure, 

operates within 1-3 GHz frequency range, and exhibits signal-to-noise ratio of approximately 10 at room temperature.534 The 

internal delay of SWD is defined by the spin wave group velocity (e.g., 3×106 cm/s in Ni81Fe19 waveguides). Power dissipation 

in SWD is mainly defined by the efficiency of the spin wave excitation. Recent experiments with synthetic multiferroics 

comprising piezoelectric (lead magnesium niobate-lead titanate PMN-PT) and magnetostrictive (Ni) materials have 

demonstrated spin wave generation by relatively low electric field (e.g., 0.6 MV/m for PMN-PT/Ni).535 The later translates in 
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ultra-low power consumption (e.g., 1aJ per multiferroic switching). Recent experimental demonstration522 of parametric spin 

wave excitation by voltage-controlled magnetic anisotropy (VCMA) is another promising route towards energy-efficient 

generation and amplification of spin waves. 

A SWD-based magnonic holographic memory (MHM) has been proposed.531 The principle of operation of MHM is similar to 

optical holographic memory, while spin waves are utilized instead of light waves. The first 2-bit MHM prototype based on 

yttrium iron garnet structure has been demonstrated.536  MHM also possesses unique capabilities for pattern recognition by 

exploiting correlation between the phases of the input waves and the output interference pattern. Pattern recognition using 

MHM has been recently demonstrated.537 The potential advantage of spin wave utilization includes the possibility of on-chip 

integration with the conventional electronic devices via multiferroic elements. In addition, magnonic holograms can show very 

high information density (about 1Tb/cm2) due to the nanometer scale wavelength of spin waves. According to estimates, the 

functional throughput of magnonic holographic devices may exceed 1018 bits/s/cm.2,531  

There are two important milestones crucial for further SWD development: (i) nanomagnet switching by spin waves;538 (ii) 

integration of several magneto-electric cells on a single spin wave bus. In order to have an advantage over CMOS in functional 

throughput, the operational wavelength of SWDs should be scaled down below 100 nm.529 The success of the SWD will also 

depend on the ability to restore/amplify spin waves (e.g., by multiferroic elements539, by magneto-electric pumping540 or by 

antidamping spin-transfer and spin-orbit torques541,542).  

A very important recent direction of research is antiferromagnetic (AFM) SWD543 that offers a thousand-time increase in 

operation speed due to the THz-scale frequencies of the AFM spin waves. The frequency-momentum dispersion of AFM spin 

waves is linear, which results in high group velocity of AFM spin waves and faster information transfer within SWD-based 

circuits. In addition, AFM spin waves usually exhibit degeneracy due to the presence of multiple (typically two) sublattices. 

This degeneracy provides an additional degree of freedom for encoding information carried by AFM spin waves. For example, 

AFM spin wave polarization can be used to encode information 544. Alternatively, information can be encoded in the phase shift 

between the degenerate spin wave modes, which can be used in topologically protected spin wave gates545. Challenges in AFM 

SWD development include: (i) efficient interconversion between spin wave signals and electric signals546,547 and (ii) efficient 

methods to control the AFM ground state, including the AFM domain control. Development of AFM-based magnetic tunnel 

junctions with high tunnel magneto-resistance is needed to address the former challenge. Magneto-electric control of AFM 

domains is a promising approach to the latter challenge.   

An intriguing recent direction of research is SWDs based on two-dimensional van der Waals (2D vdW) materials548. Spin 

waves in both ferromagnetic548 and antiferromagnetic549 2D vdW materials have been detected. The potential advantages of the 

2D vdW materials are: (i) the ease of spin wave control by out-of-plane electric fields550 and (ii) the ability to easily assemble 

designer magnetic heterostructures. Major challenges in this field include: (i) finding 2D materials with magnetic ordering 

temperatures much above the room temperature and (ii) identifying materials with low magnetic damping for long-range spin 

wave propagation. 

3.3.7. EXCITONIC DEVICES 

Excitonic devices are based on excitons as computational state variables. Excitonic devices are suited to the development of an 

advanced energy-efficient alternative to electronics due to the specific properties of excitons: 1) Excitons are bosons and can 

form a coherent condensate with vanishing resistance for exciton currents and low switching voltage for excitonic transistors. 

This allows creating energy-efficient computation with power consumption per switch significantly smaller than in electronic 

circuits. 2) Excitonic signal processing can be directly coupled to optical communication in exciton optical interconnects. 3) 

The sizes of excitonic devices are scaled by the exciton radius and de Broglie wavelength that are much smaller than the photon 

wavelength. Furthermore, excitons can be efficiently controlled by voltage. This gives the opportunity to realize excitonic 

circuits at scales much smaller than for photonic devices.  

The advantages listed above are realized using specially designed indirect excitons, IXs. An IX is a bound pair of an electron 

and a hole in separated layers. The properties of IXs make them different from conventional excitons and suitable for the 

development of energy-efficient computing: 1) IXs have oriented electrical dipole moments. As a result, the IX energy and IX 

currents are controlled by voltage allowing the realization of a field effect transistor operating with IXs in place of electrons. 2) 

The IX emission rate can be tuned over many orders of magnitude. Turning the emission off allows the realization of multi-

element IX circuits with suppressed losses while turning it on allows fast write and readout. 3) The low overlaps between 

electrons and holes in IXs allow the realization of a coherent condensate with the suppressed thermal tails and dissipationless 

IX currents enabling energy-efficient computation. 

Experimental proof-of-principle for excitonic devices including IX transistors,551 diodes,552 and CCD553 was demonstrated. IX 

condensate and coherent IX currents 554  and, recently, long range coherent IX spin currents 555  were observed at low 
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temperatures. New heterostructures based on single-atomic-layers of transition-metal dichalcogenide (TMD) for room-

temperature IX circuits were proposed. 556  Recent progress includes the realization of IXs at room temperature in TMD 

heterostructures,557 discovery of IX coherent spin currents in GaAs heterostructures558, development of first split-gate device for 

IXs, the basic mesoscopic device559, development of advanced platform for high-mobility excitonic devices560, development of 

TMD heterostructures with small IX linewidth and finding charged IXs, indirect trions. At present, the studies are focused on 

the development of basic concepts of excitonic devices at low temperatures using GaAs heterostructures and development of 

room-temperature excitonic devices using TMD heterostructures.  

3.3.8. TRANSISTOR LASER 

The Light-Emitting Transistor (LET) 561  and Transistor Laser (TL) 562 , 563  utilize a fundamental characteristic of bipolar 

transistors - that electron-hole recombination in the base is an essential feature of the transistor and that the resulting photon 

signal in a direct-bandgap base is correlated to the electrical signal driving and being driven by the device. The TL can be 

thought of as a 5 terminal heterojunction bipolar transistor (HBT) with 3 conventional electrical terminals (emitter, base, and 

collector) and 2 optical terminals (input-generation and output-recombination). 564   Very-high-speed transmission and 

processing are enabled by the projected capability to achieve over 200 GHz bandwidths in the GaAs- or InP-based devices.565  

An advantage of the TL is that a single epitaxial layer structure can be used for devices that generate photons, detect photons, 

and perform electronic functions. The layer structure of the TL resembles a heterojunction bipolar transistor with features added 

to enhance base recombination and control base transit time.563,566  When used to realize conventional logic architectures, for 

example NOR gates,567 the key advantage is speed. With processing-intensive operations and using the energy-delay product as 

a metric for comparison, a 30–100 times improvement is expected over conventional CMOS, leading to both faster processing 

and improved energy efficiency. An even greater benefit might be achieved through the use of architectures that perform 

electronic-photonic processing in the analog domain. 

The first demonstration of lasing in the TL occurred in 2004. Since that time, progress has been made on understanding the 

device physics and on using the TL for discrete optical interconnects. A key initial objective has been examining factors 

affecting device bandwidth. Edge-emitting TLs with large active regions (200 μm × 1 μm) have been modulated to 22 Gbps and 

have shown a measured bandwidth of 10.4 GHz.568  Relative intensity noise (RIN) as low as -151 dB/Hz has also been 

demonstrated, showing an approximately 28 dB improvement over diode lasers.569  To improve speed and enable integration, 

reducing the size of the active region is critical. For that reason, Vertical-Cavity Transistor Lasers (VCTL) have been examined 

and demonstrated.570  Initial VCTLs had limited temperature range due to misalignment of the cavity reflectivity and gain 

peaks. More recently, work has been underway to show that electronic-photonic logic can be made using the transistor laser. 

The initial target of an integrated TL-based NOR gate has been demonstrated, but significant work is needed to improve 

performance.571 

The ultimate performance in both power and speed will be achieved as the device is size is scaled, as projected performance to 

bandwidths in excess of 100 GHz has a sound rationale but has yet to be realized. The use of vertical-cavity structures to reduce 

the device footprint has been a first step in the scaling process but further work is needed on microcavity vertical-cavity 

transistor lasers (VCTLs). Scaling beyond micron-scale devices such as this is possible, but the key will be the design of optical 

structures such as photonic crystal cavities that will enable small numbers of photons to be captured and directed to act on other 

TL structures. As scaling advances, further examination of device physics to reduce the effective minority carrier radiative 

lifetime will be key, along with the examination of effects that might impact the modulation response. Further work is also 

needed on InP-based devices (1310 and 1550 nm emission) to facilitate the use of silicon waveguides for optical signal routing. 

Additional questions at the architecture level involve the best way to use the TL in computer systems. What is enabled by 

having very high speed optical links?  What architectures make sense for electronic-photonic NOR gates?  Are other 

approaches to computation enabled, such as analog methods?  Initial work to address how the TL might impact computer 

architecture has been underway in the Li group at the University of Chicago, in collaboration with the University of Illinois at 

Urbana-Champaign.572  Further work on how TLs might be used in machine learning applications is also underway by this 

group (unpublished).  Other noteworthy results include demonstration of blue-emitting light-emitting transistors in the 

GaN/InGaN system.573 

3.3.9. MAGNETOELECTRIC LOGIC 

Several classes of magneto-electric devices, and their possible implementations as CMOS replacements, have now been 

investigated.574 There is an extensive range of magneto-electric devices that have been explored as alternatives to CMOS 

including the magneto-electric magnetic tunnel junction (MEMTJ),574,575,576,577,578,579,580,581,582,583,584,585,586,587 the composite–input 

magnetoelectric–based logic technology (CoMET),588,589 perhaps with spin-orbit coupling,590 the magneto-electric spin-orbit 

(MESO)591,592,593,594 or inverse Rashba-Edelstein magneto-electric neuron (IRMEN)595,596 devices and the voltage controlled 
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spin switch. 597 , 598 , 599  Presently the most promising approach involves magneto-electric transistor (MEFET) 

schemes.574,586,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614  

The CoMET style devices are limited by the switching speed of the ferroelectric and domain wall motion with the  concept that 

the input voltage nucleates a domain wall, while the current would drive the domain wall to the output end of the device.587 The 

nonvolatile MESO591,592 and IRMEN595,596 logic device concepts are laterally scaled spin valves that use a magneto-electric 

layer for electrical control of exchange bias. The delay time of the CoMET, MESO and IRMEN logic devices will be limited by 

the switching speed of the ferromagnetic layer (likely nanoseconds615,616,617). 

There have been major developments, involving magneto-electric transistor (MEFET) schemes, increasing the range of possible 

magneto-electric devices, that would serve as "beyond CMOS" 'plug-in' replacement logic.574,587,602,603,607,612,614 There are also 

some benchmarking efforts,574,587,602,603 where there has been an effort to compare the most competitive magneto-electric 

devices with CMOS. The result is that it is now increasingly clear that magneto-electric field effect transistors are more likely 

to be competitive or surpass CMOS574 than the earliest magneto-electric device concepts were based on a magnetic tunnel 

junction structure.574,575,576,577,578,579,580,581,582,583,584,585,586,587 The anti-ferromagnet spin-orbit read (AFSOR)600,606 magneto-electric 

transistor (MEFET) device structure has interesting advantages:574 the potential for high and sharp voltage “turn-on”; inherent 

non-volatility of magnetic state variables; absence of switching currents; large on/off ratios; and multistate logic and memory 

applications. The design will provide reliable room-temperature operation with large on/off ratios (>107) well beyond what can 

be achieved using magnetic tunnel junctions. Again, the core idea is the use of the boundary polarization of the magneto-

electric to spin polarize or partly spin polarize a very thin semiconductor, ideally a 2D material, with very large spin orbit 

coupling. 

Magneto-electric transistor schemes are based on polarization of the semiconductor channel, by the boundary polarization of 

the magneto-electric gate. The advantage to the magneto-electric field effect transistor is that such schemes avoid the 

complexity and detrimental switching energetics associated with magneto-electric exchange-coupled ferromagnetic devices. 

Spintronic devices based solely on the switching of a magneto-electric, will have a switching speed will be limited only by the 

switching dynamics of that magneto-electric material and above all are voltage controlled spintronic devices. Moreover, these 

magneto-electric devices promise to provide a unique field effect spin transistor (spin-FET)-based interface for input/output of 

other novel computational devices. This is spintronics without a ferromagnet, with faster write speeds (<20 ps/full adder), at a 

lower cost in energy (<20 aJ/full adder), greater temperature stability (operational to 400 K or more 618), and scalability, 

requiring far fewer device elements (transistor equivalents) than CMOS. These do differ from the conventional field transistor 

in that the ME-FET must be both top and bottom gated, so the result is that these are 4, not 3 terminal transistors. Obviously, 

the semiconductor channel will only work if it is very thin, so the boundary polarization of chromia618,619,620,621 effectively 

polarizes the semiconductor channel. The 2D semiconductors of the trichalcogenide class of quasi one-dimensional 

semiconductors, such as TiS3, HfSe3, as well as InP, have the potential to be scaled to transistor widths below 10 nm suggesting 

there is a plausible route forward.  If the semiconductor channel retains large spin orbit coupling, then the spin current, 

mediated by the gate boundary polarization, may be enhanced and, to some extent, topologically protected. The latter implies 

that each spin current has a preferred direction. 

The silicon CMOS majority gate requires 13 components. The ME-spinFET majority gate requires, including clocking, of 6 

components. This represents an area improvement of over 50%, assuming similar size transistors.574 This is equivalent to 

greater than one process node. If we split the magnetoelectric side of the gate so that the channel can independently be spin 

polarized up or down, this results in a component reduction from the previous best for the MEFET of six, down to four 

components, a further 50% reduction over the standard MEFET circuit, and a reduction to less than 30% in area compared to 

CMOS.574  

There is a variant where inversion symmetry is not as strictly broken, that leads to a nonvolatile spintronics version of 

multiplexer logic (MUX).574 The magneto-electric spin-FET multiplexer also exploits the modulation of the spin-orbit splitting 

of the electronic bands of the semiconductor channel through a “proximity” magnetic field derived from a voltage-controlled 

magneto-electric material. Here, by using semiconductor channels with large spin-orbit coupling, we expect to obtain a 

transverse spin Hall current, as well as a spin current overall. Depending on the magnitude of the effective magnetic field in the 

narrow channel, we anticipate two different operational regimes. Like the AFSOR magneto-electric spin FET, the magneto-

electric spin-FET multiplexer uses spin-orbit coupling in the channel to modulate spin polarization and hence the conductance 

(by spin) of the device. There is a source-drain voltage and current difference, between the two FM source contacts, due to the 

spin-Hall effect when spin-orbit coupling is present. This output voltage can be modulated by the gate or gates, which 

influences the spin-orbit interaction in the channel especially when it is both top and bottom gated especially. The spin-Hall 

voltage in the device can be increased by using different ferromagnets in the source and drain. To increase the spin fidelity of 

current injection at the source end, one could add a suitable tunnel junction layer (basically a 1 nm oxide layer) between the 

magnetic source and the 2D semiconductor channel. This latter modification would result in diminished source-drain currents 
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though. Again, there is a reduction in delay time and energy cost, because these devices are nonvolatile. There is no 

magnetization reversal of a ferromagnet involved and the implementation of this device concept would require only 5 

components for a majority gate compared to the 13 components required of a silicon CMOS majority gate.574 The related 

“steering” magneto-electric transistor (MEFET) device, which also exploits the spin orbit coupling, but unlike the two source, 

one drain MUXer just discussed, here there is one source and two drains.614   

Magneto-electric coupling can be used to excite parametric resonance of magnetization by an electric field.622 This has been 

considered for the development of spin wave devices based on voltage controlled magnetic anisotropy in in ferromagnetic 

nanowires.623 This in turn, in effect, becomes a spin wave field effect transistor. The threshold voltage for parametric excitation 

in this system is found to be well below 1 V, which is attractive for applications in energy-efficient spintronic and magnonic 

nanodevices such as spin wave logic. 

The challenges in pushing forward these technologies extends not only to the fabrication and characterization of a new 

generation of nonvolatile magneto-electric devices, but also to ascertaining the optimal implementation of CMOS plug in 

replacement circuits. Questions that need to be resolved include demonstration that the magneto-electric devices can be scaled 

to less than 10 nm, and this includes finding a suitable 2D channel material that can be polarized by exchange coupling with the 

boundary polarization of the magneto-electric and yet does not suffer from large scale edge scattering. Experimental 

demonstration of limits to the switching speeds of any antiferromagnetic magnetic electric still remain absent but scaling 

studies624 provide some promise the switching speed could be very fast (< 10 ps). That said, the magneto-electric transistor has 

far fewer challenges to implementation than the magneto-electric magnetic tunnel junction, so, not surprisingly, there is a 

shifting of development effort toward those and related devices for both memory and logic. The actual demonstration of such 

devices appears almost "in hand" suggesting that experimental evidence of promise is not that far away. What is significant is 

that there are demonstrations of working devices based on the readout provided by anomalous Hall measurements, that change 

with the voltage controlled switching of the magneto-electric chromia (Cr2O3).625,626,627 Furthermore, there are now compelling 

demonstrations of deterministic switching of the surface polarization of boron doped chromia by voltage alone (i.e., no applied 

magnetic field is required to break symmetry).625 

3.3.10. DOMAIN WALL LOGIC 

The domain wall-magnetic tunnel junction (DW-MTJ) or three-terminal magnetic tunnel junction (3T-MTJ) operates as an in-

memory computing nonvolatile logic device through current-driven manipulation of a single domain wall in a magnetic 

patterned wire,628,629,630 with readout performed using a magnetic tunnel junction. It can be considered as an extension of 

racetrack memory to a single domain wall racetrack for compute-in-memory applications, and it also has applications for 

computing in high radiation environments such as space. In the last years, there has also been extensive development on using 

DW-MTJ devices for neuromorphic computing and brain-inspired computing. 

The domain wall track is composed of heavy metal/magnet/oxide thin films patterned into a wire shape. Traditionally the 

magnetic layer is a ferromagnet, but antiferromagnets and ferrimagnets can also be used. Standard materials examples are 

Ta/CoFeB/MgO. On top of the track is a patterned MTJ hard reference layer with additional related thin films to promote high 

switching field of the hard layer compared to the magnetic track. 

The ends of the ferromagnetic track can be exchange-biased in opposing directions using antiferromagnets, and/or an additional 

electrode (called an Oersted field line) can be used to ensure a single domain wall is electrically created in the track, and/or an 

additional magnetic tunnel junction can be placed to nucleate the domain wall electrically, and/or lithographically-defined 

pinning notches can be fabricated to keep the domain wall in the track. 

The simplest form of the device has three terminals: input (IN) and clock (CLK) contacting the ferromagnetic track, and output 

(OUT) contacting the top of the MTJ. During the write operation, a voltage applied between IN and CLK drives a current and 

moves the domain wall using either spin transfer torque (STT) and/or spin orbit torque (SOT). During the read operation, a 

voltage applied between CLK and OUT measures the resistance state of the MTJ relative to the domain wall, which will 

determine the amount of current to drive subsequent devices. The device can act as an analog universal NAND gate, in addition 

to other basic logic gates: if IN is connected to the OUT of two previous devices, and only if both are in a low resistance state 

(logic output 1) will there be sufficient current to depin and move the domain wall to the other side of the MTJ, changing the 

output of the device from a low resistance state (logic output 1) to high resistance state (logic output 0). The DW-MTJ can also 

exhibit fanout: a fanout of 2 has been partially demonstrated experimentally630, and theoretically higher fanout is possible.  

A related device is the mLogic four-terminal version, which has an additional non-magnetic, non-conducting spacer on top of 

the ferromagnetic track that couples the current-manipulated domain wall to a domain wall or nanomagnet in an electrically-

separated layer, which then alters the output MTJ resistance.631,632,633,634,635 The additional terminal comes from two terminals 

connected to the output MTJ. The four-terminal version provides complete input/output isolation. 
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The device operation has been modeled in micromagnetics including NAND, shift register, and full adder functions629,642,  and 

initial benchmarking was performed up to a full adder simulation.636,637,638 A SPICE model has been developed to enable larger 

scale circuit simulations. 639  Single device operation and three-device circuit operation has been shown in experimental 

prototypes,630,630,640 including inverter, buffer, and concatenation operation. The prototypes showed in experiment one of the 

first examples of concatenable magnetic logic devices for building larger circuits. The four-terminal mLogic spacer coupling 

has also been demonstrated.633 

Larger scale system-level simulations have been performed to determine the benefits and drawbacks of DW-MTJ logic. One 

circuit-level energy-performance analysis showed that while very low voltage can be used to operate the essentially all-metallic 

devices, it comes with increased extrinsic domain wall pinning effects and thermal noise. 641  They predicted the energy 

reduction from increasing the tunnel magnetoresistance (TMR) will saturate when TMR > 100%, but further increasing TMR 

can mitigate predicted thermal noise limits. Another work simulated a 32-bit adder communicating with registers with all DW-

MTJ devices and shows SOT switching can make the technology competitive with a comparable CMOS sub-processor 

component.642 

Seminal works came out in the 2021 year that made advances for experimental implementation of DW-MTJ computing. 

Prototypes were shown that benefit from perpendicular magnetic anisotropy (PMA) and SOT domain wall switching, therefore 

lowering the switching current density compared to previously demonstrated prototypes by over 10x 643 , down to 

 1 − 5 × 1011  𝐴 𝑚2⁄ . One challenge for DW-MTJs has been the precise etching needed to define both the MTJ and the domain 

wall track, without damaging the delicate thin film layers, which has previously lowered the device TMR after patterning to 

between 10-40%. Fabrication advancements in this work show that the TMR and resistance-area product of the unpatterned 

film stack can be maintained after patterning, and showed a TMR of 170%, around the highest that can be obtained to-date for 

PMA MTJs. The work also showed all-electrical operation of the DW-MTJ, including domain wall nucleation, except for an 

external DC bias field to overcome coupling of the domain wall track layer to the pinned layers. With these modernized 

prototypes that combine lower switching current density and high TMR, cycle-to-cycle studies of the domain wall operation 

were able to be performed, showing cycling variation of 7-10% and that the domain wall can be pushed back and forth in the 

device for continuous operation without the domain wall exiting the track. A two-device circuit was demonstrated showing an 

inverter operation.  

A series of works also were released this year that apply to both DW-MTJs and domain wall-based majority logic644,645. These 

works also showed full integration of PMA, SOT, and MTJs into the device. Current through an MTJ is used to electrically 

initialize the domain wall. A hybrid free layer is designed and implemented to separate the delicate domain wall-containing 

track from the etching ions and therefore preserve the domain wall movement properties. Domain wall velocity is measured and 

show to be as high as 42 m/s. 

These prototype results are a critical advancement since they provide heretofore unknown metrics for DW-MTJs, such as 

switching current density, switching speed, TMR, resistance-area product, cycle-to-cycle variation, device-to-device variation, 

scaling behavior, etc. These metrics can now be put into models to predict circuit operation and guide future development: for 

example, the 10% cycling variation with TMR = 165%, when put into a model of a full adder, predicts 90% accuracy, which 

could be increased to near-100% accuracy if the variation could be decreased to under 5% 643. 

Here we will explain the numbers used in the comparison table for the DW logic device. The cell size of a DW-MTJ based 

NAND has been calculated to be 18F2 where F is the feature size 629, which is a 20x improvement compared to a CMOS-based 

NAND cell size of 360F2. This is because a single DW-MTJ can perform NAND. To accommodate the contacts, MTJ, room 

for the domain wall to switch, and spacing between devices, the minimum needed device pitch is 6F, which is 90 nm for F = 15 

nm, and the minimum device length is 4.5F, which is ~70 nm for F = 15 nm. A feature size down to F = 50 nm has been 

demonstrated in a fully functional device645. Using a NAND feature size of 18F2, for F = 15 nm this is a projected density of 

2.5 × 1010  𝑑𝑒𝑣𝑖𝑐𝑒𝑠 𝑐𝑚2⁄ . 

Recent results in new materials have shown experimentally that domain walls can obtain speeds up to 250 m/s in Pt-Bi/Co-

Gd646 and up to 5700 m/s in ferrimagnetic CoGd alloys647. Assuming the above scaled feature sizes, this would correspond to 

predicted switching speeds of 3.5-8 GHz, but these materials have not yet been integrated into a full device. The 42 m/s 

measured in a full device prototype would correspond to 0.6 GHz in a scaled device. 

Circuit speed has been shown in simulation to be 33 MHz (30 ns) for a 1-bit full adder and 2 MHz (495 ns) for a 32-bit full 

adder; circuit energy has been shown in simulation to be 0.5 fJ for a 1-bit full adder and 31 fJ for a 32-bit full adder642. These 

numbers are considering a conventional CoFeB ferromagnetic track, and much higher speeds could be obtained using the new 

materials described above. Circuit speed and energy have not yet been demonstrated experimentally.  
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Scaled device switching energy is predicted to be approximately 5 × 10−18  Joules for F = 15 nm 629 . In experimental 

prototypes, the switching current density was measured ~ 1 × 1011  𝐴 𝑚2⁄  for F = 250-450 nm 643. Assuming the switching 

current density stays size-independent as feature size scales down, and conservatively assuming a scaled F = 15 nm device 

would use switching voltage V = 100 mV and switching time t = 5 ns, this would correspond to approximately E = IVt = 

7.5 × 10−15 Joules. Thus the number cited as demonstrated is based off of the measured switching current density in prototypes, 

but translated to a scaled energy with the described assumptions. 

Subthreshold slope is not a good metric for DW logic, since thermionic emission is not the main source of switching error. For 

high enough switching current above the domain wall depinning energy, the switch can be considered as a collective switch of 

the magnetic object as it jumps out of its potential well and moves with momentum across the track. When the switching 

current density is close to or below the depinning energy, stochastic depinning will dominate: this stochasticity has been 

simulated to be useful for deep neural network applications662.  

The DW-MTJ is being studied by many in the community for non-Boolean applications in analog and neuromorphic 

circuits,648,649,650,651,652 including spike-timing-dependent-plasticity synapses653,654 and leaky, integrate, and fire neurons655,656. 

Since the DW-MTJ can act as both an artificial synapse and an artificial neuron, it provides a monolithic platform for 

neuromorphic computing. By exploiting the dynamical behavior of the domain wall, or an analogous device with skyrmion 

position being read by a tunnel junction, it can be used to mimic bio-inspired dynamical effects that are essential for learning 

and operation in the human brain657,658. Some example device-inherent behaviors have been shown to have system-level 

benefits, such as using magnetic stray field interactions between the DW-MTJs to implement lateral inhibition and winner take 

all659, manipulating the resetting of the domain wall to mimic the leaking and edginess properties of neurons 660,661, and 

engineering the DW-MTJ shape to have necessary dynamics for training of deep neural networks662 or for online learning658. 

While the cycle-to-cycle variation challenges are starting to be measured and addressed, Major challenges still exist in 

understanding and improving the device-to-device variation of the devices, which arises from variation in the domain wall 

location and pinning landscape. A discussion of influence of device variability on circuit performance is presented in Xiao et 

al.642 Better understanding of experimental viability of the technology is needed, given TMR variability and constraints and 

scaling-induced variability and errors.663 Thin film stack growth and engineering needs to be done to adapt the traditional 

MRAM-like stack for DW-MTJs, including minimizing stray magnetic fields from the pinning layers to remove the need for a 

DC bias field when the device is operated. Example ideal applications of the device technology are still needed, with some 

potential areas being radiation-hard environments, lower latency hardware accelerators, and low-area, low-energy needs of 

edge-computing internet of things devices. Experimental demonstrations of larger operating circuits and systems is still lacking. 

The experimental evidence of applications to bio-inspired neuromorphic computing is nascent with a few prototypes 

demonstrated, but many of the above predicted effects are only shown in simulation. 

3.3.11. SPIN TORQUE MAJORITY GATE 

A majority gate is a logic gate used to simplify circuit complexity to carry out the majority function where the output is a HIGH 

if and only if more than half of its inputs are HIGH, otherwise the output is a LOW.664 A majority gate can have any number of 

inputs. However, the most common ones referred to as 3-input majority gates or MAJ3 are implemented with three inputs and 

one output. A majority gate can implement an AND by tying one of its inputs to a 0, or an OR by tying the input to a 1. A 

minority gate can be derived from a majority gate by appropriately using an inverter according to De Morgan’s rule. In a full  

adder, the carry output is the majority function of the three inputs. Implementations of majority gates are currently done using 

complementary metal oxide semiconductor (CMOS), quantum cellular automata (QCA),665,666,667,668 spin-wave majority gate 

(SWMG)669,670,671 and domain-wall or spin-torque majority gate.664,672,673,674 

Spin torque majority gate (STMG) is a 3-input majority gate that operates based on domain wall motion driven by either spin 

transfer torque (STT) or spin orbit torque (SOT) in magnetic tunnel junctions (MTJs) usually with perpendicular magnetic 

anisotropy (PMA). This has an advantage of energy efficiency, non-volatility, small area, low power, reconfigurability, and 

radiation hardness compared to other types of majority gate devices. In an STMG, three MTJs set the input states with STT and 

SOT while the fourth device reads the output state through tunneling magnetoresistance (TMR).664,672,673,674 

There is extensive work on micromagnetic simulations of STMGs. The most common implementation consists of four discrete 

PMA ferromagnetic nanopillars of independent fixed layers placed on a common free cross-shaped PMA ferromagnetic 

layer.672,673 It is observed that there is a minimum critical current density required to switch the device, which is inversely 

proportional to the applied pulse width. Attempts have been made to concatenate multiple STMGs and to implement a full 

adder circuit.674 The STMG operates at a smaller drive current compared to its CMOS counterpart, but with slower switching.674  
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Majority gates with in-plane magnetic anisotropy have been demonstrated with Permalloy to have errors in the antiparallel 

configuration due to thermal noise introduced by the clocking field pulses.675 Hence, implementation with PMA are more stable 

and energy efficient.672 

Other types of implementation include a five-input majority gate with lateral spin valve,676 and a fabricated 3-input majority 

gate in which the input and output nanomagnetic logic devices are field-coupled together rather than monolithically 

integrated.677 

Significant advances have been made recently overcoming the experimental challenges of STMGs678,679,680. These advances 

apply to both domain wall logic and STMGs and are described more fully in the domain wall logic section. These works 

showed full integration of PMA, SOT, and MTJs into the device. Current through an MTJ or an Oersted field line is used to 

electrically initialize the domain wall. A hybrid free layer has been designed and implemented to separate the delicate domain 

wall-containing track from the etching ions and therefore preserve the domain wall movement properties. Domain wall velocity 

is measured and show to be as high as 42 m/s. 

There is currently a lack of an efficient spin torque inverter (STI). It is also still difficult to cascade multiple STMGs, though 

some proposals exist. Because the optimal functioning of the STMG occurs below some critical sizes, more work needs to be 

done experimentally in patterning devices with smaller dimensions. 

 

4. EMERGING DEVICE-ARCHITECTURE INTERACTION  

4.1. INTRODUCTION 

Many new emerging Beyond-CMOS devices will require co-design between devices and higher levels of computer design (e.g., 

circuit, architecture and application). These emerging devices are not intended simply as “drop-in” replacements for standard 

CMOS devices, but will require new types of circuit designs, new functional module architectures, and even new software to 

best utilize the new devices’ capabilities. 

In particular, novel design issues spanning the device and architecture levels especially need to be considered when adopting 

new low-level computing paradigms. In such situations, devices may be organized in radically new ways to carry out 

computation in a very different manner from what we may consider the most “conventional” computing paradigm, which has 

relied on von Neumann architectures using standard combinational and sequential irreversible Boolean logic. Examples of 

unconventional or alternative computing architectures and systems that comprise new computing paradigms are listed in Figure 

BC4.1 and include the following: 

• Neuro-Inspired Systems (§4.3.1)—These computing architectures take direct inspiration from the brain to develop more 

efficient systems. Local learning rules (§4.3.1.1) are a neuro-inspired method of training neural networks that keeps all 

communication local. Hyperdimensional computing (§4.3.1.3) is a cognitive computing model based on the high-

dimensional properties of neural circuits in the brain. Spiking neural networks (§4.3.1.1.1) minimize communication 

energy by using sparse spike-based communications. Reservoir computing (§4.3.2.4) nonlinearly transforms time-

dependent signals into a new, random high-dimensional basis and then a conventional machine learning algorithm is used 

to make predictions from the new basis set. 

• Dynamical Systems (§4.3.2)—Analog dynamical systems can be used to solve a variety of problems.  Optimization 

problems can be solved using simulated annealing (§4.3.3.1) or coupled-oscillator-based approaches (§4.3.2.1).  Dynamical 

systems can be used to encode associative memories (§4.2.3.7) or to solve differential equations (§4.3.2.3).  Chaotic logic 

can theoretically enable sub-kT computing (§4.3.2.5). 

• Probabilistic Systems (§4.3.3)—Devices and circuits that produce truly nondeterministic or random outputs at the 

hardware level may be useful for accelerating probabilistic algorithms such as Monte Carlo or simulated annealing, for 

generating secure cryptographic keys, and for other applications. 

• Reversible Systems (§4.3.4)—Computing systems that approach logical and physical reversibility offer the potential to 

greatly exceed the energy efficiency of all other approaches for general digital computation. While devices for reversible 

computing may perform fairly conventional functions (such as switching or oscillating), they should be optimized to use 

quasi-reversible physical processes such as near-adiabatic state transitions, near-ballistic signal propagation, highly elastic 

interactions, and highly underdamped oscillations. For maximal efficiency, circuits and architectures must approach 

reversibility at the logical as well as physical level. 681 , 682  Careful fine-tuning and optimization of analog circuit 

characteristics (e.g., resonator quality factors, elasticity of ballistic interactions) remains a difficult and crucially important 
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engineering challenge that must be met to fully realize the promise of the reversible computing paradigm. In the meantime, 

potentially commercially viable near-term applications of reversible computing are beginning to emerge for specialized 

cryogenic applications.683,684 

• Digital in-Memory Systems (§4.3.5)—Boolean logic can be performed in memory arrays and digital logic is being 

embedded closer and closer to memory to reduce data movement costs.  

• Quantum computing (CEQIP chapter)—Quantum computing685 offers the potential to carry out exponentially more 

efficient algorithms for a variety of specialized problem classes.686 Devices for quantum computing are very different from 

conventional devices, and fine-tuning device characteristics to avoid decoherence while organizing them effectively into 

scalable architectures has so far proved to be a formidable engineering challenge.687 The 2022 IRDS Cryogenic Electronics 

& Quantum Information Processing (CEQIP) roadmap chapter addresses quantum computing. For more details refer to that 

roadmap chapter.  

 

Figure BC4.1. Architectures/Systems for Novel Computing Paradigms Discussed in This Chapter  

Requiring Codesign with Emerging Devices 

 

Figure BC4.2. Conventional vs. Alternative Computing Paradigms 

Note on above figure: The conventional computing paradigm is explicitly designed to be digital, deterministic, irreversible, and classical. 

Typical classical analog computing schemes (the focus of this section), including the neural approaches, relax the digital requirement while 

leaving determinism optional, and they are typically physically irreversible. In classic probabilistic computing, we abandon the requirement 

for determinism, while preserving the irreversible, digital nature of the computation. And typical classical reversible computing techniques 
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maintain the digital and usually deterministic nature of computation while attempting to minimize irreversibility. Quantum computing 

machines, as they are conceived and engineered today, are highly thermodynamically irreversible at the system level, and many useful 

quantum algorithms are nondeterministic. Although achieving digital stabilization of quantum information via fault-tolerant error correction is 

a major goal of the field, it remains very challenging.  Quantum machines that are also thermodynamically reversible at the system level are 

rarely considered but may be conceivable. 

 

These systems are composed of new computational kernels and enabling devices as shown in Figure BC4.3. 

 

Figure BC4.3. Emerging Devices and Computational Kernels Requiring Codesign between the Device Layer 

and Higher Layers of the Technology Stack 

Neuro-inspired, dynamical, and stochastic systems all typically leverage analog computing.  Analog computing attempts to “let 

physics do the computation” by using physical processes directly (as opposed to, by going through the traditional digital 

abstraction barrier) to compute complex functions. Historically, this required inefficient analog circuitry for all elements, and 

expensive analog to digital conversion, resulting in limited applications, specifically those requiring analog signal processing. 

Recently, new analog devices have enabled a new generation of efficient analog architectures. This is especially true for hybrid 

analog and digital systems where efficient designs may exploit analog preprocessing and computation prior to digitization. 

Analog preprocessing can reduce the required A/D precision and therefore reduce the system energy consumption by orders of 

magnitude.688 Additionally, new architectures can be used for ultra-low-power co-processors for conventional CMOS designs. 

A key challenge is that analog signals are typically low precision, with energy and latencies increasing exponentially with 

higher bit precision. Fortunately, many machine learning and other applications are being developed that can tolerate such 

lower precision computation. 

Furthermore, all these architectures except for reversible computing are special purpose accelerators designed to accelerate a 

specific function.  Reversible computing has the unique property that it can do general digital computing at lower energy than is 

possible with conventional methods. 

The reader should note that the material in this section is not intended to comprise an exhaustive list of all possible new 

computing paradigms, new devices, new circuits, or new architectures. It is only intended to serve as a representative sample of 

several new general computing paradigms and specific technology concepts.   

In this section we first describe some enabling computational kernels (§4.2), then some systems and architectures exhibiting 

novel computing paradigms (§4.3), and finally we discuss some of the enabling devices (§4.4). 
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4.2. COMPUTATIONAL KERNELS 

Emerging computing systems are composed of enabling kernels that perform some novel computational function more 

efficiently than a corresponding digital implementation.  At the device level these kernels can be divided into “synaptic kernels” 

and “neuron kernels.”  The synaptic and neuron kernels can then be composed into larger array-based kernels that perform 

larger scale computations (§4.2.3). 

4.2.1. SYNAPTIC KERNELS 

Synaptic kernels typically represent the memory in a novel system and must have a programmable internal state and use that 

state to modulate an input, most commonly by multiplying the internal state with the input.  By merging memory with a simple 

computation, synaptic devices allow emerging systems to overcome the von-Neumann bottleneck by merging processing and 

memory. Synaptic devices are also typically passive devices that modulate an incoming signal. 

4.2.1.1. SYNAPTIC INFERENCE 

The most common kernel is synaptic inference where a stored state is used to modulate an input.  The simplest form of this is to 

use an analog memory device as a programmable resistor and to do multiplication using Ohm’s law 𝑉 = 𝐼 × 𝑅, or equivalently 

𝐼 =  𝑉 × 𝐺.  Many variations on this are possible.  Nonlinear devices can be used to implement non-linear functions and 

multiple devices can be combined to provide pattern matching or associative memory functionality (§4.2.3.7).  Enabling 

devices are surveyed in §4.4.1. 

4.2.1.2. SYNAPTIC TRAINING 

In addition to using a stored value to modulate an input, the stored value needs to be programmable.  If the values can be 

programmed in parallel, the devices can also implement training functionality like outer product updates (§4.2.3.4), three factor 

local learning rules (§4.3.1.2.2) and spike timing dependent plasticity. 

4.2.1.3. STOCHASTIC SYNAPSES 

For probabilistic systems (§4.3.3), having a good source of randomness is critical.  Often a stochastic synapse will have a 

programmable mean state that varies stochastically around that mean state. For many applications it is also critical to be able to 

tune the probability distribution or standard deviation of the variation around the mean. This functionality can be implemented 

in a single device or in a combination of devices (one to tune the mean state and one to tune the standard deviation).  Possible 

stochastic devices are surveyed in §4.4.3.  

4.2.2. NEURON KERNELS 

Neuron kernels perform more complex computations on an input, may integrate an input over time, and typically do not need to 

have a programmable internal state.  This allows for a complex expensive function to be computed using a single or few 

devices in an energy efficient manner, obviating the need for time- and energy-consuming ADC/DAC in the circuits. Neuron 

kernels are also often active devices that restore a signal and inject energy into a system.  If a passive device is used in large 

systems, it is often paired with an active driver circuit to power downstream synaptic kernels. Just as in digital logic, energy 

periodically needs to be injected into a system or the signal will decay.  In many applications neurons provide a natural place to 

do so. For systems that accelerate learning and update synaptic weights, neuron blocks should be capable of programming the 

synaptic blocks. 

The benchmarks used to evaluate electronic neurons generally measure the energy per operation, the fabrication cost, or the 

chip area of the integrated functional block, and the fidelity to the desired neuron function (e.g., integrate and fire). High 

reliability and low variation of devices are two key factors for the viability of a neuron technology. Device failure will require a 

lot more circuitry for error detection and correction.689  Large variation increases the difficulty for designing peripheral circuits 

and degrades the adaptability of the block.  

4.2.2.1. NONLINEAR ACTIVATION (THRESHOLD, RELU, SIGMOID, TANH) 

One of the most basic and common neuron functionalities is to provide a nonlinear activation function.  In many neural 

networks, after a linear multiply accumulate is performed on a set of inputs, or in a hidden layer, a non-linear activation or 

transfer function is applied.  The presence of this function prevents the network from mathematically collapsing into a single 

linear equation, which helps improve the computational capabilities as the number of layers increases. 

This can be as simple as a binary threshold that outputs a 1 if the input crosses a predefined threshold or a 0 otherwise. A binary 

threshold can be implemented both with an analog comparator or a new device. In more conventional neural networks, 

functions like rectified linear units, sigmoid functions and Tanh functions are common.  There are many device candidates that 

can approximate these functions.  If a device transfer function does not exactly model the intended numerical function, the rest 

of the system can often be adapted to compensate (i.e., a neural network can be trained to use the transfer function available) 
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4.2.2.2. (LEAKY) INTEGRATE AND FIRE 

For systems that operate using temporal dynamics (leaky) integrate and fire neurons are common.  An input signal is integrated 

until a threshold is reached and then a binary spike is created.  Mott memristors,690 phase change based memristive switches,691 

and chalcogenide threshold switches692 have all been reported to be capable of performing temporal voltage signal integration 

in which the effects of non-simultaneous unitary post-synaptic potentials add in time.  

4.2.2.3. STOCHASTIC SPIKING 

Probabilistic systems can have randomness be injected at the synapse or neuron level.  At the neuron level, the randomness can 

be represented as random threshold shifts or as stochastic firing of a neuron after a threshold is reached. Possible stochastic 

devices are surveyed in §4.4.3.  

4.2.2.4. OSCILLATORS 

Many dynamical systems (§4.3.2) are based on coupled oscillators.  While oscillators are not a conventional “neuron” they 

provide many of the same functionalities for dynamical systems.  Possible device implementations are surveyed in §4.4.2. 

4.2.2.5. ANALOG-TO-DIGITAL CONVERTER 

While conventional analog-to-digital converters are the least efficient approach to a neuron, we explicitly mention them as they 

are still used by many proposed architectures.  Because the bulk of a system’s computation is accelerated by the synaptic 

kernels, it is often possible to average out the cost of an analog-to-digital converter and still provide system level advantages.  

Using digital signals between analog arrays/synapses also allows for the use of flexible digital routing to enable more flexible 

computing accelerators. 

4.2.3. ARRAY-BASED KERNELS 

Analog crossbars or memory arrays can perform low-precision matrix operations in parallel, by processing analog data directly 

at each memory element. Thus, in 1990, Carver Mead projected that custom analog matrix vector multiplications would be 

thousands of times more energy efficient than custom digital computation.693  Because a digital memory must individually 

access each memory cell and move the data to a separate computation unit, digital systems consume more energy and incur 

longer latencies. Computing on larger crossbars/matrices allows for any analog overhead to be averaged out over many matrix 

elements. Any two- or three-terminal device that features a modifiable internal physical state variable (which might be, for 

example, a variable resistance, a variable capacitance, a stored charge, or a stored magnetic field) that modifies the device’s 

behavior can be used as a building block for analog operations. Several different types of array architectures are summarized in 

the following sections. 

4.2.3.1. MATRIX VECTOR MULTIPLICATION (MVM) AND VECTOR MATRIX MULTIPLICATION (VMM)  

MVM and VMM are key computational kernels underlying many different algorithms. Although these terms are sometimes 

used interchangeably, we refer to MVM as the operation Ax, where A is a weight matrix and x is the input vector. VMM uses 

the transpose of the same matrix: ATx. In an analog accelerator, MVM is used during the forward propagation step (inference) 

while VMM is needed during the backpropagation steps (training). 

There are several approaches to accelerating these kernels. Any programmable resistor such as a two-terminal resistive memory 

or a three-terminal floating gate cell can be used.694 Alternatively, a capacitive MVM can be designed by adding charge from 

capacitive memory elements.695 

For many algorithms such as neural network inference (of an already-trained network), accelerating MVM accelerates the bulk 

of the computation,696 allowing for large system level efficiency gains. An 𝑁 × 𝑁  crossbar accelerates O(𝑁2)  operations, 

leaving only 𝑂(𝑁) inputs and outputs that need to be processed and communicated. This allows each unit of communication 

and processing cost (such as analog-to-digital conversion) to be amortized over 𝑁 memory elements. This changes the tradeoff 

for some neural-network algorithms as larger crossbars are more efficient than smaller ones, provided that the algorithm can 

make use of them. There are ultimately several factors that limit how large a crossbar can be made, including: (1) accumulation 

of device errors on a column711,697, (2) accumulation of voltage drops induced by array parasitic resistance,707 and (3) ability to 

isolate individual devices during programming.708 

Analog MVMs have been used for experimental demonstration of threshold logic,698 compressed sensing initial filtering,699  

robotic navigation and control,700 adaptive filtering,701 Fourier transforms702 and more. Additionally, Analog MVM techniques 

have been used for ultra-low power classification and neural networks.703 

4.2.3.2. RESISTIVE MVM AND VMM 

Resistive MVMs are based on using Ohm’s law, 𝑉 =  𝐼 × 𝑅, to perform multiplication, and Kirchhoff’s current law to perform 

addition by summing currents. Programmable resistors are used to program the weights. Arranging the memory elements in an 
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array allows for the entire operation to be performed in a single parallel step, giving a fundamental 𝑂(𝑁) energy and latency 

advantage over a standard digital memory that, at best, must access a memory array one row at a time.704  An MVM and the 

transpose VMM can be performed on the same memory array, by changing whether the rows of an array are driven and the 

columns are read, or vice versa.705,706 

The key metrics for a resistive MVM are 1) the energy per multiply-and-accumulate (MAC) operation, 2) latency per MVM, 3) 

crossbar and supporting circuitry area per matrix element, 4) crossbar dimensions, 5) input/output bit precision for digitally 

driven MVMs, and 6) the standard deviation of the noise or error per conductance when programmed as a percentage of the 

absolute conductance range. Relating to #6, the absolute error is more important than the error relative to a given conductance 

level. This is because in an MVM, it is the absolute conductance errors that are summed by Kirchoff’s law along a column of 

the array, not the relative errors. For example, a 10% error in a 1 μS device contributes less error to the MVM than a 1% error 

in a 100 μS device. 

If high-resistance memory elements (𝑅on  =  100 MΩ) with good analog properties are developed, one ReRAM based crossbar 

design projects that each multiply and accumulate operation will require 12 fJ when using 8-bit A/Ds and only 0.4 fJ when 

using 2-bit A/Ds.706  The latency for a 1024 × 1024 MVM will only be 384 ns or 11 ns for 8-bit or 2-bit A/Ds, respectively. 

This is over 100× better than an optimized SRAM-based accelerator, which would require 2,700 fJ and 4,000 ns for 8 bits. The 

area per weight for the 8-bit A/D ReRAM accelerator is 0.05 µm2, 16× better than the 0.8 µm2 needed for an SRAM accelerator. 

The energy and latency are dominated by the A/D circuitry and not by the crossbar itself, with the A/D converters and digital 

circuitry occupying 10× the area of the ReRAM array itself. 

To allow for large arrays and minimize parasitic resistance drops, high resistance (~100 MΩ) memory elements are needed. The 

higher the resistance, the larger the array possible, and the more any A/D costs and system level communication costs are 

amortized out.707 However, such high resistances would prolong and potentially complicate the process of programming each 

conductance value accurately to encode already-trained neural network weights or matrix element values. 

A key design choice is the bit precision of the inputs and outputs to the crossbar. The fewer bits are needed by an algorithm, the 

more efficient the crossbar is. If analog or binary inputs/outputs can be used, the A/D costs can also be avoided. The inputs to 

the crossbar can be encoded in voltage, time, or digitally. Voltage encoding applies different voltages to represent different 

analog input values. This requires circuitry to create different input voltages, and it requires that the memory elements have a 

linear I-V relationship, greatly complicating the use of nonlinear access devices.708  Encoding inputs in variable length pulses 

requires longer reads and an integrator to sum the resulting current. Digital encoding applies each bit of the input sequentially 

and then combines the result digitally.695 For digital encoding, the usefulness of the lower-order bits in the input is limited by 

the noise/errors on the highest-order bit. To save on ADC costs, each bit position can also be combined in analog using 

successive integration and rescaling709. 

The precision with which each resistor needs to be programmed depends on the application. Neural networks trained for simple 

image classification tasks such as MNIST digit recognition can often tolerate as much as a 15% error or noise on their 

conductance values before losing accuracy. The requirement is much more stringent for the ImageNet dataset, which is much 

more complex (100× larger images, 100× more classes than MNIST) and is considered more representative of a real-world 

application. For example, the ResNet50 neural network, commonly used for benchmarking digital accelerators710, tolerates only 

about 1% weight error and requires 8-bit activations and ADCs711. 

For many applications, it is useful not to treat the required resistor programming precision as a single number, but to instead 

consider the desired precision as a function of the programmed resistance (or conductance). This is because the actual weight 

values programmed into the resistive array may not be uniformly distributed, and thus certain conductance ranges may be much 

more heavily utilized than others. The precision of the more heavily used weight values generally have a larger effect on the 

end-to-end algorithm accuracy. A good example is neural network inference. It is well known that for many neural network 

models, the weights have a skewed distribution where values near zero are the most abundant.712 Therefore, for this application, 

the resistances which encode low weight values should be made as precise as possible, while precision for the high weight 

values is less important because these tend to be outliers.711 One class of devices that has high precision at low conductance is 

flash transistors operated in the subthreshold regime.713 

To extend the precision of computation beyond the limits of reliable programming, a technique called bit slicing can be used.714 

With bit slicing, a matrix of wide operands is striped across multiple crossbars, enabling the crossbars to collectively perform 

computation on arbitrarily wide operands at the cost of additional digital circuitry to reduce partial results from multiple bit 

slices. When bit slicing is combined with digital input encoding, each bit of the input must be applied to each bit slice, 

analogous to multibit scalar multiplication. Leveraging bit slicing, accelerators for a wide range of applications have been 

proposed, including combinatorial optimization,714 neural network inference, 715 , 716  graph analytics, 717  and scientific 

computing.718 
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4.2.3.3. CAPACITIVE MVM 

Some analog accelerators propose crossbar-based parallel MVMs using volatile capacitive memories, where a weight value 

(binary or multi-bit) is stored as charge on a capacitor. Analog multiplication of the capacitive weight and a binary voltage 

input can be carried out using a multiplying digital-to-analog converter (MDAC) circuit; the resulting currents can be summed 

on a wire as in the resistive MVM case.719 Another implementation uses a binary input to control the redistribution of charge 

between two capacitors. This charge movement induces a voltage change on a metal lines, and the voltage changes induced by 

all the capacitive cells on a column are summed to form a dot product.695 

Some other techniques combine capacitive and resistive MVM. For example, an analog weight can be stored as charge on a 

capacitor, which is also connected to the gate of a transistor. The amount of charge then controls the source-drain resistance of 

the transistor.720,721 One challenge of these schemes is the fact that capacitor charge is not truly non-volatile and can decay 

within milliseconds to seconds. 

4.2.3.4. OUTER PRODUCT UPDATE (OPU)  

Analog resistive memory crossbars can also perform a parallel write or an outer product, rank 1 update where all the weights 

are incremented by the outer product of a vector applied to the rows and a different vector applied to the columns. This is a key 

kernel for many learning algorithms such as backpropagation722 and sparse coding.704,723  Row inputs are encoded in time and 

column inputs are encoded in either time723,724,723 or voltage.706 

When an MVM, VMM and OPU are combined on the same crossbar, extremely efficient learning accelerators can be 

designed,706,725,726 with the potential to be 100–1000× more energy efficient and faster than an optimized digital ReRAM or 

SRAM based accelerator.706 

The same figures of merit and design considerations for a VMM apply to the OPU. Additionally, the 1) write noise and 

2) asymmetric write nonlinearity are important for determining how well a learning algorithm will perform. The 3) ability to 

withstand failures, and 4) endurance are also important for training systems. To have an efficient learning accelerator, parallel 

blind updates are needed where weights are updated without knowing the previous value and without verifying that the correct 

value is written. To obtain ideal accuracies, a low write noise is needed, less than 0.4% of the weight range. Even more 

important is having low asymmetries in the write process. The change in conductance for a positive pulse should be the same as 

that for a negative pulse for all starting states.727  Often the conductance will saturate near a maximum where a positive pulse 

will not change the conductance, while a single negative pulse will cause a large decrease in conductance. This significantly 

lowers accuracy as it only takes a single negative write pulse to cancel many positive pulses. 

Several devices have been examined for neural network training, including phase change memory,725 resistive memory706,728 

and novel lithium-based devices.729,730  Currently no devices meet all the ideal requirements for training (high resistance 

>10 MΩ, low write noise <0.4%, low write asymmetry727). Nevertheless, algorithmic approaches such as periodic carry,731 

Local Gains,732 Tiki-Taka,733 or the inclusion of semi-volatile capacitor-on-gate devices734 can be used to help compensate and 

achieve ideal accuracies. Several co-design tools have been developed to model the impact of device level properties on 

algorithmic performance,725,735,736 which have allowed for the algorithmic development needed. Additionally, lower resistance 

devices can be used to give smaller near-term gains in performance. 

The need for high on-state resistance and good analog characteristics means that filamentary resistive memories may not work 

as well as non-filamentary devices. A resistance higher than a quantum of conductance, 13 kΩ, requires current to tunnel 

through a barrier. This presents a fundamental problem for a filamentary device: a single atom can halve that tunneling barrier, 

resulting in huge variability and poor analog characteristics. OPUs have recently been physically demonstrated using memory 

cells with >10 MΩ resistance: the cell consists of an ionic floating-gate memory element in series with a conductive-bridge 

RAM select device.737 

One requirement of the parallel OPU is that the update has to be rank 1. This is satisfied by stochastic gradient descent updates 

but not batch or minibatch gradient descent which are also commonly used. One way to make a batch update computable with 

the parallel OPU is to approximate it as a series of M rank-1 updates where M is much smaller than the batch size. These 

approximations can be built using streaming principal component analysis, though there is a tradeoff between efficiency and the 

approximation quality, which determines the final accuracy.738 

4.2.3.5. LARGE-SCALE FIELD PROGRAMMABLE ANALOG ARRAYS (FPAAS) 

A field programmable analog array has configurable analog components, digital components, configurable interconnects 

between those components and off-chip communications.739,740,741 FPAAs allow users to build analog applications without 

having expertise in IC design. FPAA I/O lines can transmit or receive analog signals, digital signals and create direct 

connection lines typical of analog circuits. The routing between analog and digital blocks can occur between the blocks of 
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devices, with converters between these blocks, or more finely connected heterogeneous analog and digital component 

populations. The components are often organized into regions called computational analog blocks (CABs). CAB components 

vary considerably between implementations but often include nFET and pFET transistors, transconductance amplifiers [TA or 

operational transconductance amplifier (OTA)], other amplifiers, passives (e.g., capacitors), as well as more complicated 

elements (e.g., multipliers). The most advanced FPAAs to date utilize Floating-Gate (FG) devices, dramatically improving the 

analog parameter storage and therefore the resulting computational capability.742 FPAAs include aspects of digital computation, 

such as FPGA blocks or shift registers or microprocessors, to complete the full end-to-end configurable system.742  

The fundamental breakthrough was recognizing that a switch matrix of single floating gate elements could be used for analog 

computation. The routing crossbar networks were, in fact, crossbar networks that could support VMM and other 

computations.743  Routing was no longer dead weight, as perceived for FPGA architectures. The floating gate cells could also 

allow for mismatch calibration at the mismatch source.744,745  The density for VMM in FPAA architectures is nearly the level of 

custom IC design. These analog computations can be made robust to temperature fluctuations.746  These techniques have been 

utilized by a number of students in university courses.747,748 FPAA based VMMs can be scaled to small geometry (e.g., 40 nm 

and smaller) and operated at RF frequencies.749,750 FPAAs have been used for command-word recognition in less than 23 μW 

with standard digital interfaces.741 The full classification results in less than 1 μJ per classification (or inference), which has 

1000× improvement over similar digital neuromorphic solutions requiring roughly 1 mJ or higher for just an inference.751 

4.2.3.6. RESISTIVE MEMORY CROSSBAR SOLVER 

Resistive memory crossbars can be used to solve matrix problems, such as the linear system of equations 𝐴𝑥 = 𝑏, where 𝑥 is 

the unknown vector, represented by output voltage, and 𝑏 is the known vector represented by input current.752,753 Each resistive 

memory element is a programmable resistor that represents an element in the coefficient matrix 𝐴 . (Alternatively, any 

programmable analog element can also be used.)  The equation 𝐴𝑥 = 𝑏 can be mapped to Ohm’s law, ∑𝐺𝑖𝑗(𝑉𝑗 − 𝑉𝑖) = 𝐼𝑖. Op-

amps are used to set the 𝑉𝑖 to zero by using the Op-amp virtual ground. Currents, 𝐼𝑖 , are applied to the crossbar and the resulting 

voltages, 𝑉𝑗, are measured. The op-amps provide feedback allowing the 𝑉𝑗 to be determined. 

Similarly, eigenvectors of a matrix 𝐴  can be calculated. To solve problems with positive/negative coefficients in 𝐴 , two 

crossbars can be used. In all cases, crossbar solvers yield their solution in one computational step, without any digital iteration, 

and the solution is generally obtained in less than 1 s, depending on the poles of the analogue feedback circuit.754 The same 

scheme can be extended to one-shot learning by linear/logistic regression.755 

The biggest challenge in taking advantage of analog solvers for HPC is that analog operations only offer low precision, ~8 bits 

fixed point, while HPC applications often demand 32 or more bits of floating-point precision. This can be potentially overcome 

by hybrid analog/digital systems where the computationally intense parts of a calculation can be done in analog, while the 

required precision can be achieved by refining the solution in digital using a method with lower computational complexity.756 

This allows for some digital computation, while still getting a reduction in the overall computational complexity. The precision 

can potentially be improved by using iterative refinement or by using the crossbar to initialize a digital solver. The analog 

solution can also be used as a preconditioner within a Krylov method like CG or GMRES. Large matrices can be broken down 

into smaller blocks compatible with the accelerator and scaling can be used to compensate for finite on/off ranges. Work is still 

needed to show how noisy crossbar solvers can be used with ill-conditioned matrices. In general, iterative refinement will only 

converge if the noise is less than 1/𝜅 where 𝜅 is the condition number of a matrix. 

4.2.3.7. ASSOCIATIVE MEMORIES 

Associative memories (AMs), which efficiently “associate” input queries with appropriate data words/locations in the memory, 

are powerful in-memory-computing cores. AMs search for data words/locations in the memory in a highly parallel fashion 

according to (i) an input query and (ii) the desired association (matching) function.757 AMs are widely used for network 

routers758, and recently have been exploited to accelerate machine learning models such as memory augmented neural networks 

(MANNs)759, clustering758, and bioinformatics tasks758. 

CMOS AM or CAM designs suffer from several fundamental challenges:  

(i) The density of CMOS AMs, especially ternary CAM (TCAMs)—where “don’t care” states as well as “1s” and “0s” need to 

be stored/searched—is about half of the SRAM density.  

(ii) The standby power of CMOS AMs is high.  

(iii) CMOS AMs are typically limited to implementing Hamming (HM) distance-based matching.  

Recent research on AMs based on beyond-CMOS devices suggests new directions for addressing the above challenges. For 

example, a ferroelectric FET (FeFET) based multi-bit CAM (MCAM)760 implements nearest-neighbor (NN) search according 

to a sigmoid-like (SG) distance function and offers significant performance/energy advantages versus competing designs for 
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memory augmented neural networks (MANNs). This, as well as other recent work suggest that harnessing the benefits of AM 

for data intensive applications requires cross-layer efforts spanning from devices and circuits to architectures and applications. 

Different non-volatile memory (NVM) technologies (such as RRAM, FeFET memory and Flash) can be exploited to implement 

various AMs (e.g., exact and best match searches, multi-level and analog data representations, and different distance functions). 

Like with the much-studied resistive crossbar array architecture, the large performance benefit for using CAMs for in-memory 

computation comes from the vast reduction of data movement for target applications with large numbers of compare or lookup 

operations. We classify AMs according to (i) the data representation (binary, ternary, multi-bit and analog) in a cell, and (ii) the 

matching type (Table BC4.1). Representative AM designs based on different technologies are discussed below. 

FeFET AM cell designs—were originally proposed to accomplish exact match (EX), best match (BE), and threshold match 

(TH) TCAM based on HM distance. Different match types employ different sensing circuits759. The same cell design can also 

function as a EX/BE/TH-MCAM when FeFETs are programmed to store multiple bits760, which improves storage density. The 

FeFET BE/TH-MCAM can implement SG and squared Euclidean (SE) distance functions761, which is useful for machine 

learning applications. This design can also function as an EX-ACAM where the threshold voltage (Vth) values in FeFETs define 

either upper or lower bounds, and an analog input matches stored cell data if it is within the bounds defined by the FeFETs762. 

ACAMs can encode more information per cell than MCAMs but may suffer more from noise and variation effects. Other 

FeFET AM cell designs have also been considered for reducing search latency, lowering search energy, simplifying peripherals, 

and/or improving scalability763,764. 

RRAM and PCM AM Designs—Resistive memory (RRAM), has been widely used for crossbar type IMC core designs. 

RRAM has also been used to realize TCAMs, MCAMs, and ACAMs. There are a variety of RRAM TCAM designs (2T2R, 

5T2R, 3T1R, and 2.5T1R)763 that support EX match and BE/TH match based on the HM distance. A 6T2R EX-ACAM765 was 

proposed and can directly process analog inputs. This design has high static power consumption and does not support BE/TH 

search. Phase-change memory (PCM) has similar characteristics to RRAM. A PCM EX-TCAM design was proposed and 

evaluated in Ref 766.  This design can perform BE/TH searches based on HM distance with appropriate sensing circuits. 

Flash AM Designs—Floating-gate MOSFET (flash) is a mature NVM technology that is suitable for AM design.767 and768 have 

proposed EX-TCAM/MCAM designs based on 3D NAND Flash. The same 2-transistor design the FeFET approach was 

implemented in Ref. 761 with flash technology where it can perform EX match and BE/TH match based on SG and SE distance 

functions. The main drawbacks of flash technology for AM design are high write voltages, low endurance, and scalability. 

MTJ AM Designs—Magnetic tunnel junction (MTJ) memory (MRAM) offers fast write operations and high endurance. EX-

TCAMs based on voltage-dividers (9T-2MTJ) and latches (15T-4MTJ) were proposed in Ref 769 and Ref 770, respectively. MTJs 

cannot offer high ROFF/RON ratios and usually require several transistors to cope with this issue. Hence it may not be a good 

candidate for MCAM or ACAM.  

While new technologies may enable more efficient CAMs, and enable new/existing distance functions to be computed directly 

within the memory, said solutions may also fundamentally change algorithms developed and deployed by the ML community. 

Data precision might change due to the multi- bit capacity of NVMs, different distance metrics might be used for an original 

ML algorithm (e.g., cosine instead of HM distance), etc. To ensure technology-enabled CAM solutions have value, evaluations 

must extend to the application level (e.g., to ensure iso-accuracy for ML applications). Recent work has proposed using 

associative memories as in-memory computation blocks for applications such as associative processing,771,772,773 approximate 

computing,774 spiking NNs,775 string matching,776 and regular expression matching finite state machines.777 Given the broad 

range of application spaces – from machine learning models like MANNs which reduce training costs, to deep random forests 

(i.e., interpretable AI)778, to bioinformatics758, to security779, etc., further study is warranted. 

 

Table BC4.1  Classification of associative memory based on the representation and matching function.  

Match-line (MLi) functions are defined based on input query (qj) and memory content (Cij) 

 

  Binary CAM 

(BCAM) 

Ternary CAM 

(TCAM) 

Multi-bit CAM 

(MCAM) 

Analog CAM 

(ACAM) 

Data type of 

qj and Cij  
0    1 0     1     X 

S0  S1 

S2  S3 
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Exact match 

(EX-) 
MLi = 1 if Cij == qj for all j / 0 otherwise 

MLi = 1 if qj ∪ Cij 

for all j / 0 otherwise 

Best match 

(BE-) 

MLi = 1 if ∑ 𝑑(𝐶𝑖𝑗 , 𝑞𝑗)𝑗  is the smallest among all MLs, where 𝑑(𝐶𝑖𝑗 , 𝑞𝑗) 

is the distance between Cij and qj 

Threshold 

match (TH-) 

MLi = 1 if  ∑ 𝑑(𝐶𝑖𝑗 , 𝑞𝑗)𝑗 ≤ Thr, where 𝑑(𝐶𝑖𝑗 , 𝑞𝑗) is the distance between 

Cij and qj and Thr is the threshold 

 

4.3. EMERGING ARCHITECTURES AND SYSTEMS 

4.3.1. NEURAL-INSPIRED COMPUTING 

There are several characteristics of how the brain computes that have been proposed for efficient computing technologies.  

Architecturally, there are two attractive approaches: processing in memory, which is analogous to the analog computation that 

occurs at synapses within the brain, and event-based communication, which is analogous to neuronal spiking.  Both approaches 

potentially yield considerable energy savings, and the brain clearly benefits from both. As discussed in §4.2.3, analog crossbars 

can be used as building blocks for conventional neural networks to give significant improvements in energy, latency and area 

over digital accelerators. For accelerators specialized to a particular algorithm, various analog neurons can be used to process 

the crossbar outputs and avoid the need for and high cost of analog-to-digital conversion. 

There is also a lot of work on more biologically inspired neural hardware. For biologically inspired neurons, connections are 

often designed to be persistent on short timescales, but (depending on the model) may exhibit mutability/plasticity in their 

strength and/or topology on longer timescales to facilitate, for example, adaptive in-situ learning. Connections between neurons 

can be modeled as discrete events or spikes (often implemented using an address event representation) or continuous-valued 

analog signals such as voltage or current. A key challenge for more biologically inspired architectures is the need for 

algorithmic co-design. For many neuro-inspired computational models, further research is needed to demonstrate state of the art 

machine-learning performance. 

4.3.1.1. NEURAL NETWORK INFERENCE 

In-memory analog computing has been extensively explored as energy-efficient implementations of deep learning algorithms, 

or deep neural networks (DNNs). To be useful for a particular task, a DNN must first be trained so that the values of its internal 

parameters or weights are optimized to yield high accuracy. After training, the DNN can be deployed for the intended 

application, where it may encounter unseen data that deviate significantly from the training data. During this phase, called 

inference, the weights are left fixed. Emerging accelerators for neural network inference are a more near-term goal compared to 

training accelerators. During inference, there is no need to apply frequent updates to the memory device conductances, or to 

propagate information backward through the network, both of which greatly simplify the architecture. Since MVMs are the 

dominant computational kernel used during inference,696 large system-level energy savings are possible by efficiently 

computing the MVMs in the analog domain, as described in Section 4.2.3.1. Furthermore, executing MVMs inside memory 

arrays largely eliminates the very significant energy cost in conventional digital systems of moving weight matrix data between 

memory and the processor.780,1087 

The basic architecture of an analog in-memory inference accelerator consists of resistive arrays that accelerate MVMs, 

combined with digital elements to perform a small amount of computation and handle the data routing. Since weight values are 

directly encoded in physical device resistance values, the computation is inherently weight stationary: weight values stay inside 

their MVM arrays, but the digital activation values are moved between processing elements as the computation proceeds from 

layer to layer.781 The MVM array receives digital inputs at a specified precision (e.g., 8 bits) and the analog MVM result is 

digitized by an ADC. These outputs are then further processed digitally (e.g., activation function, pooling) and digitally routed 

to the MVM array of the next neural network layer. For all but the simplest multi-layer perception (MLP) networks, digital 

memory arrays are needed to buffer these intermediate values between layers.  

Inference accelerators have been demonstrated fully in hardware using flash memory 782  and ReRAM. 783  So far, these 

demonstrations have shown high accuracy on simple benchmark tasks such as MNIST. There are many more proposed 

inference accelerator architectures, whose performance has been evaluated in simulation on larger-scale machine learning 

problems such as ImageNet.715,714,713,697,784,716,785,786,787 Physically demonstrating these larger-scale systems is challenging, due to 

the very large number of resistive devices needed, and the sensitivity of these more difficult tasks to analog errors. Nonetheless, 

these systems can be realistically modeled by combining measured device- or array-level properties with system-level 
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simulation.735,786 A common architectural choice in these proposed large-scale architectures is to group a set of analog and 

digital circuit elements into a modular unit called a tile.714,715,784,713 Many tiles are connected together, e.g., using a concentrated 

mesh interconnection topology, to implement the many layers of a deep neural network. Since the tiles have the same structure, 

this type of system can scale to larger networks by adding more tiles. 

The main challenge with analog in-memory inference accelerators is to ensure high accuracy along with the high energy 

efficiency. Analog computing differs fundamentally from digital in that (non-catastrophic) errors at the device and circuit level 

can directly affect the inference prediction. In a DNN, these errors can propagate and grow from one layer to the next. At the 

same time, nonlinear operations such as activation functions, ADC quantization, and the argmax operation (at the network 

output) can help suppress the propagation of these errors. Given these complex mechanics, it is difficult to know how much 

precision is needed at the device level, or even the MVM level. Therefore, analog systems should be designed with the end-to-

end neural network accuracy as the figure of merit, rather than simply the MVM precision. A common, alternative design 

choice is the full-precision guarantee: the system is parameterized (via the array size, ADC resolution, number of bit slices, etc.) 

such that each analog MVM result, after being digitized, can match the precision of an N-bit digital processor.715,714,697 This 

choice often leads to an MVM-level precision that is far more than sufficient for high end-to-end inference accuracy, and thus 

can cause energy and area inefficiency.711 

The sources of error that affect inference accuracy in an analog system are the same ones described in Section 4.2.3.1 that 

degrade the accuracy of an MVM. These include: (1) errors in device resistance programming due to process variations or 

device/circuit noise in the write process, (2) noise in the device resistance during an MVM, (3) resolution and noise in the ADC, 

(4) parasitic voltage drops due to array interconnect resistance, (5) drift over time in the programmed device resistances, and (6) 

noise, process variation, and transients in the peripheral analog circuits, and (7) temperature dependence. 

For neural network inference specifically, the effect of these errors (especially #1-4 above) can depend very strongly on the 

distribution of the data values in the neural network. A near-universal property of neural networks is the fact that the 

distribution of weight values is not uniform, but rather heavily concentrated near zero. This property is partly why pruning 

(eliminating low-valued weights) has been so successful in compressing neural networks, making them easier to process by 

digital inference accelerators.712 For analog inference accelerators, one implication is that the low-valued weights need to be 

more precise than the much less common high-valued weights. As a result, the method that is used to map weight values to the 

device resistances can have a very large effect on the accuracy. If weights with low absolute value correspond to low 

conductance, higher accuracy to be achieved by devices that have low error at low conductance.711 This also leads to high 

On/Off ratio as a desirable property for neural network inference. Since low-valued weights are abundant, an improvement in 

the On/Off ratio can greatly reduce the array currents, reduce the parasitic voltage drops,707 and enable larger arrays with higher 

energy efficiency. This is an important example of how the device and system architecture (e.g., mapping method) are designed 

with the algorithm in mind to ensure robustness to errors, as well as high efficiency. 

There are two other prominently used methods to reach high accuracy even with very limited precision in the memory device 

technology. One of these is bit slicing,715 described in Section 4.2.3.2, where the 𝑁 bits of weight precision are “sliced” across 

multiple devices, and the MVM results from these slices are aggregated digitally. Bit slicing can be helpful, or even necessary, 

when device precision is limited. However, there are two important caveats: (1) representing weight values with high fidelity 

does not imply MVMs are computed with high fidelity, because errors accumulate across many devices within a slice, and (2) 

bit slicing incurs significant energy and area overheads, due to requiring a separate MVM for each slice.711 

Neural network retraining is also commonly used to compensate for device errors. The most common style of compensation is 

to inject noise during the forward and/or backward propagation phase of training, by an amount that emulates the amount of 

error or noise in the device conductance.786,788,789,790,791 The drawbacks of these methods are that: (1) the retrained network that 

compensates for device errors may not have the same accuracy as the original network and (2) the device compensation method 

may be difficult to integrate with state-of-the-art training workflows. In a similar vein, methods have been developed to 

optimize the mapping of weights to conductances to mitigate the effects of parasitic voltage drops.785,789,792,793 

Conductance drift is a concern for inference accelerators and arises from physical changes in the memory devices that occur 

over time. This causes a drift in the weight values; if this drift is predictable, it can be compensated.794 However, the physical 

processes underlying drift are often thermally driven, and result not only in weight drift but also an increase in the weight 

variance over time.713 Eventually, the accuracy may be degraded to the point where the device resistances must be refreshed 

from a digital reference: the exact refresh frequency depends on the device and the application. 

4.3.1.1.1. SPIKING-BASED NEURAL NETWORKS (SNNS) 

Like the brain that couples both the processing in memory and spike-based communication for maximal space and energy 

efficiency, a good spiking based neural network needs to couple both.  Ultimately, the spiking function by neurons has two 
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features that must be captured by a proposed device or circuit: its non-linearity and its efficient long-distance 

communication.  First, it must accomplish the analog-to-spiking conversion, which in its simplest form is a compact 1-bit 

analog-to-digital conversion, but ideally would also enable holding some additional state or history from the analog 

inputs.  There have been many proposed devices for spiking neurons including neuristors, 795 spin-torque-based devices,796 

stochastic phase change neurons,797 superconducting neurons,798 and others. Second, future spiking systems must be able to 

communicate this information efficiently to downstream neurons.   

Currently, CMOS systems rely on event-driven communication of packets that contain some source or destination address 

relevant to routing the spike to appropriate destinations. Thus, CMOS systems do benefit from the relative rarity of the 

communication (only transmit when an event occurs), and are already achieving considerable savings from that, but do not 

benefit significantly from the theoretical 1-bit precision of the spike as a multibit address is needed. In this respect, more 

efficient mechanisms for direct point to point communication, such as superconducting systems, 3D-nanowires, or perhaps 

optical interconnects are needed. The challenge in these systems is how to achieve the necessary level of fan-in/fan-out (i.e., 

number of synapses per neuron) between non-local regions and how to deliver that information in a suitable form for processing 

in the analog memory circuits used as synapses. 

4.3.1.2. NEURAL NETWORK TRAINING 

In-memory accelerators for neural network training is inherently more difficult than inference accelerators, due to the need to 

support frequent updates to the conductances of the memory devices. These conductance updates must not only be frequent, but 

also must be both blind and sufficiently accurate. Having to verify the conductance after each programming step is costly and 

would eliminate the energy benefits of an in-memory training accelerator. 

For deep neural networks, the most ubiquitously used training algorithm is gradient-descent-based learning with 

backpropagation. In backpropagation, a loss function is computed at the output of the network and the weights in each layer are 

tuned to optimize the value of the global loss function. In spiking neural networks, local learning rules have also been used. 

4.3.1.2.1. BACKPROPAGATION 

In backpropagation, training data is first fed in the forward direction through a neural network and a loss function is computed 

at the output. The gradient of the loss function with respect to each layer (the layer-wise error) is then computed for each layer. 

These errors are computed from the last layer backward to the first, using successive VMMs between the layer-wise error and 

the weight matrix. Within a layer, the optimal weight update is an outer product between two vectors: the layer-wise error and 

the layer’s activations. Compared to an analog inference accelerator, supporting the backpropagation of errors within a training 

accelerator requires additional digital logic and memory, since activations computed during the forward pass must be saved to 

compute the correct weight update.694 For high efficiency, the same array used for MVM should be used to compute the VMM 

(transpose operation) by allowing the inputs to drive either the rows or the columns of the array.706 

The in-memory OPU computational primitive is very useful for accelerating backpropagation, since the update needed for each 

weight in the matrix can be computed in analog by the array itself: see Section 4.2.3.4. This reduces the digital processing 

overhead and is faster and more efficient than programming row by row.704 However, one limitation of the method is that OPU 

updates assume a batch size of 1 during training. Larger batch sizes are often desired, which can reduce wear on the devices, 

enable greater pipelining, and improve training convergence.694 Thus, some works have proposed computing the weight updates 

within a batch in digital hardware, then transferring these updates to the memory array at the end of a batch. This mixed-signal 

technique can also be used to account for the low bit precision of a device update, by digitally storing the residual of the update 

and accumulating over this residual in the next batch.799 Another method is to construct an optimal rank-1 approximation of a 

batch update that allows the efficiency of the in-memory OPU to be leveraged while also retaining the convergence and 

endurance benefits of batched training.738 

The greatest challenge for analog in-memory training accelerators is ensuring accurate, blind conductance updates. This 

accuracy is affected by: (1) cycle-to-cycle write noise or limited programming resolution, (2) linearity in the update response, 

e.g., the conductance change in response to a pulse should be the same regardless of the starting conductance, (3) symmetry in 

the update response, e.g., the conductance change in response to a pulse should be the same regardless of the update polarity, 

and (4) device-to-device variations in the update response.800 In general, it has been found that an asymmetric nonlinearity is 

much more harmful than a symmetric nonlinearity, because it tends to cause the weight to settle toward zero after a sequence of 

updates.727,801 In addition to meeting these requirements, the resistive device should further have high endurance, low write 

latency, and low write energy. Low write currents are also desired to reduce parasitic voltage drops during write, which can 

further distort the desired weight update.694 

At the device level, a linear update response requires a device to be smoothly tunable between its minimum and maximum 

conductance. Early ReRAM devices proposed for this application were highly nonlinear, responding with an abrupt 
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conductance change to a single positive or negative update pulse.706 This can partially be attributed to the filamentary nature of 

many ReRAM devices that can make their conductance respond highly nonlinearly to small changes in the arrangement of 

atoms or ions in the filament. One way to alleviate this is to rely not on the creation and annihilation of a filament for 

conductance change, but smoothly modulate the conductivity of the bulk channel material. This has been explored using ionic 

electronics, or electrochemical RAM (ECRAM), where mobile ions are driven into and out of a channel material to 

continuously modulate the conductivity. Exploiting this bulk phenomenon has led to devices with highly linear, symmetric, and 

deterministic update characteristics.730,729,737, 802 , 803
 Another way to obtain linear and symmetric behavior is to embed the 

conductance states in the device geometry, rather than modulating electrical doping or material properties. Linearity has been 

showing in simulation using spintronic devices where a domain wall (separating two oppositely magnetized regions) can be 

pinned at one of many lithographically defined notches along a long track. The domain wall can be moved between notches via 

a spin-transfer-torque or spin-orbit-torque current, and its position can be read out as a conductance using a magnetic tunnel 

junction.804,805,806 

There are also system architecture solutions to non-ideal device properties. The periodic carry method splits the bits of a weight 

across multiple memory devices, similar to bit slicing for MVM, in order to accommodate the limited precision or noise of a 

conductance update. Updates are accumulated on the least significant bits and these are periodically “carried” to the devices 

encoding the higher bits. By limiting the range of the least significant bit, periodic carry can also mitigate nonlinearity.731 The 

Tiki-Taka method splits a weight matrix into two, where one matrix is always composed of devices that are in their linear 

regime, and their states are periodically transferred to another, less frequently updated matrix.733 Another method is to split the 

bits of significance between two different types of devices: a nonlinear non-volatile memory device (e.g., PCM) for the higher 

bits and a linear volatile memory device (e.g., capacitor) for the lower bits. Updates are carried out on the volatile device and 

periodically carried to the non-volatile device.734
 For asymmetry, one proposed solution is to use the conductance difference 

between two devices to encode a weight, and always apply updates of the same polarity to one of the two devices. Periodically, 

when a device conductance saturates, the pair is re-programmed to represent the same weight with lower conductances.725,807
 

All of these techniques rely on the fact that expensive operations such as carries are infrequent and their energy is amortized 

over many updates, most of which can be carried out using more efficient parallel OPU methods. 

4.3.1.2.2. LOCAL LEARNING RULES 

Spiking neural networks can be viewed as a type of recurrent neural network, where activities are binary and recurrence is both 

due to explicit connections and internal dynamics (referred to as implicit connections)808,809. This analogy enables the transfer 

of learning algorithms based on gradient descent to local synaptic plasticity. The synaptic plasticity dynamics that result from 

these derivations are “three-factor rules.” Three factor rules are popular among computational neuroscientists for reward-based 

learning810. Because gradient-based rules vastly outperform other traditional learning rules borrowed from neuroscience on 

industry relevant benchmarks, our focus here is on gradient-based learning. 

As in deep learning, estimating the gradients with respect to parameters embedded in deeper layers requires solving a spatial 

and temporal credit assignment problem. Through approximations that rely on ignoring gradients caused by explicit 

connections, it is possible to solve the temporal credit assignment problem with a very small penalty compared to the exact 

gradients808,811.  

Solving the spatial credit assignment problem remains challenging, however. This is because all interlayer connections are 

explicit and ignoring explicit connections is equivalent to ignoring the effect of deeper layers. Solving the spatial credit 

assignment problem is under heavy investigation, ranging from approximating gradient back-propagation 812 , predictive 

coding813,814, contrastive learning to auxiliary loss functions815. Understanding how such approximations in the context of novel 

in-memory architectures is key to local learning using both conventional and spiking neural networks. 

The machine learning community has been dominated so far by GPUs high bandwidth access to global memory, making 

gradient backpropagation like rules compatible. However, the demands on scale and power are increasing pushing to distribute 

computations across multiple nodes and processors with more limited access to global memory816. As a result, one can expect 

an increase in output on the topics of local learning from the machine learning community. Furthermore, local learn rules that 

keep all data local naturally map to in-memory computing technologies with primarily local interconnects. 

Regardless of the credit assignment techniques used, local learning is subject to constraints that do not verify the assumptions 

of deep learning and statistical learning theory: data is potentially independent, and identically distributed (i.i.d.), causing 

catastrophic forgetting; data consists of a unique stream (“batch size is one”), leading to long training times and the requirement 

of impractically small learning rates; and large amounts of data are required. These problems are compounded by the realities 

of limited precision and hardware non-idealities, especially in the case of emerging nanotechnologies. A result of these 

challenges is that hybrid learning schemes that combine offline pre-training and online learning need to be explored. 
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4.3.1.3. HYPERDIMENSIONAL COMPUTING 

Hyperdimensional (HD) computing is a cognitive computing model based on the high-dimensional properties of neural circuits 

in the brain.817 Information is encoded into high-dimensional distributed representations in the form of high-dimensional 

vectors or hypervectors.817,818,819 A hypervector distributes information uniformly across all of its dimensions, resulting in a 

distributed or holographic representation.820,821 This contrasts with conventional positional representations in which different 

digits or bits can convey vastly different amounts of information depending on their position. Consequently, incurring bit errors 

in particular positions can result in catastrophic failure. In contrast, the distributive nature of hypervectors combined with high 

dimensionality provides a robustness to bit errors: errors that occur in any dimension result in the same information loss, and 

this information loss is small due to the large number of dimensions. Thus, HD computers exhibit graceful degradation as 

hardware components fail, analogous to in the brain when neurons die821,822.  

HD computing relies on the algebraic properties of their key operations to incorporate the advantages of structured symbolic 

and vector distributed representations. It incorporates learning capability along with typical memory functions of 

storing/loading information.817 It mimics important functionalities of the human memory model with vector operations, which 

are computationally tractable and mathematically rigorous in describing human cognition.823 HD computing operates over a 

well-defined and hardware-friendly set of mathematics: Binding is well suited for associating two hypervectors and used for 

variable-value association. Bundling is a memorization function that keeps the information of input data into a bundled vector. 

Permutation is an operation to represent sequences by creating a near-orthogonal but reversible hypervector. Reasoning is done 

by measuring the similarity of hypervectors. 

HD computing has shown several advantages as the next generation of cognitive machines. First, its training capability in one 

or few shots, where partial data are learned from one or few examples as opposed to many iterations.822,824,825 Second, HD 

operations are highly parallel and do not require frequent weight updates, thus empowering online learning on processing in-

memory.824,826 Third, HD computing has natural robustness to noise and bit errors provided by the high-dimensional distributed 

representations. This enables greater tolerance for device variability and unreliable emerging technologies, such as non-volatile 

memory827,828,829 or nanoscale devices with low signal-to-noise ratios.826,830,831 In fact, HD computing enables further size and 

energy scaling by abandoning the deterministic requirement set by the variability and reliability of the composing devices. 

Finally, HD computing has been shown great potential to enable lightweight privacy and security.832,833,834,835 

4.3.2. COMPUTING WITH DYNAMICAL SYSTEMS  

In computing with dynamical systems, the built-in dynamical behavior of a physical system exhibiting continuous degrees of 

freedom is used to compute. The entire computational process can be analog, with only the results being digitized. The 

following subsections give a few examples of different types of dynamical systems-based approaches.  Also exemplifying this 

category are the hardware-based reservoir computing or liquid-state machines, which were already discussed above in §4.2.2.4. 

Although some of the below methods target NP-hard problems and provide approximate solutions, it’s important to note that, to 

date, no general physical computing method (including analog and quantum approaches) has yet been clearly demonstrated to 

be capable of exactly solving NP-hard problems without requiring exponential physical resources (energy and/or time) to be 

invested in the physical process performing the computation. The prevailing belief among computational complexity 

theorists836 is that solving NP-hard problems efficiently would require uncovering new physics (i.e., beyond standard quantum 

mechanics). (Note that although quantum computers can efficiently find prime factorizations, this is not known to be an NP-

hard problem.) 

4.3.2.1. COUPLED-OSCILLATOR BASED OPTIMIZATION 

Coupled-oscillator machines are another class of analog accelerators for combinatorial optimization that share a similar 

architecture: they are composed of a network of decentralized nonlinear oscillators, and the programmable strength of the 

coupling between them encodes the specific problem to be solved. These networks have been proposed and demonstrated with 

electrical,837,838,839,840,841  optical,842,843,844 and electromechanical845 oscillators. These systems are often called “Ising machines”, 

because they map readily to the Ising graph optimization problem, with each oscillator representing one bistable spin. Any 

combinatorial optimization problem can be converted into an equivalent Ising problem that is programmed onto and solved by 

the machine. The fixed points of the equations of motion of such networks correspond to the solutions of an NP-hard 

combinatorial optimization problem and can model other NP-hard problems as well.841 

Networks of coupled oscillators have been shown to embed the energy (cost function) of the Ising problem in their physical 

dynamics and relax to configurations that minimize this energy. Networks of coupled parametric or second-harmonic injection 

locked nonlinear oscillators can be designed such that the network physical dynamics implement the method of Lagrange 

multipliers on the Ising problem.846 They can thus rapidly sample the local minima of a problem,838 and can potentially also be 

used to arrive at solutions close to the global minimum.837,840 The sampling speed is determined fundamentally by the oscillator 
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frequency and the quality factor of the oscillator network. The accuracy of the different architectures has been benchmarked 

using large instances of the Ising or Max-Cut problems generated by the operations research community. Solutions have been 

found that match those obtained by state-of-the-art digital algorithms.839,842 Energy and delay benchmarking remain a future 

step. 

Of the proposed coupled oscillator optimization schemes, the systems that use electrical (LC) or electronic (ring oscillator) 

oscillators are the most compatible with CMOS technology. Since the Ising problem is specified by a connectivity matrix, the 

oscillators can be densely connected using a resistive crossbar.837,840 In these networks, each oscillator takes on a discrete binary 

nature by synchronizing to its associated second-harmonic pump oscillator through a circuit nonlinearity. In an 𝑁-spin Ising 

problem, the bistable voltage signals of the 𝑁 fundamental oscillators play the role of the 𝑁 Ising spins while the 𝑁 second-

harmonic pump voltage signals play the role of the corresponding Lagrange multipliers that enforce bistable constraints on the 

spins.847 Novel nonlinear dynamical system approaches that go beyond Lagrange multiplier optimization and exceed state-of-

the-art performance on certain benchmark problems have been proposed848 and their physical implementation is an area of 

ongoing research. The nonlinearities in all these approaches can be easily implemented by semiconductor components such as 

diodes, MOS capacitors, or amplifiers. In fact, phase-based Boolean computing using such nonlinear oscillator circuits was first 

proposed decades ago.849,850,851,852 

The physical limits of coupled oscillator systems are governed by the achievable level of weight precision and circuit delay. 

The resistive connections must be linear, programmable to high precision, and have minimal drift. The precision and retention 

of the resistive connections limit the accuracy to which a problem can be programmed onto the hardware, and the precision 

requirements for an adequate representation increase with problem size. For very large problems, device or process limitations 

will impose an upper bound on the quality of the solution; the target error bound depends on the application, but it must be 

superior to bounds that are guaranteed by digital approximation algorithms. Since a coupled oscillator network relies on 

synchronization between the oscillators, signal delays can also impact performance, especially in high-frequency circuits 

needed for rapid optimization. To this end, architectures have been proposed that separate the oscillators in time rather than 

space using optics,843 but this comes at the loss of continuous-time communication among the oscillators, leading to slower 

convergence. 

Related constraint satisfaction systems have been built. 853  An interesting approach based on memory co-processors was 

introduced as Memcomputing.854 Useful insights can also be obtained by looking into dynamical systems like iterated maps,855 

and 0-1 continuous reformulations of discrete optimization problems.856   

4.3.2.2. DYNAMICAL ASSOCIATIVE MEMORIES 

Hopfield networks are attractor networks proposed for associative memories857 where the fixed points (or stable states) of the 

system correspond to memories, and the dynamics of the network is such that the system settles to the fixed point, which is 

closest to the initial state the system starts from.  These networks can be implemented with coupled oscillators.858,859,860 

The associative memory application is widely used in the tasks of voice and image recognition, which can be performed in a 

cellular neural network architecture.861,862 In this work, five decimal digits, ‘1’–‘5’, are associated with the other five digits, ‘6’–

‘0’. Hebbian learning is used for storing patterns.863 Patterns with noisy input pixels can still be recalled. The delay per cellular 

neural network operation is dependent on the input pattern, input noise, and thermal noise.  

A key challenge for oscillator-based associative memories is storage capacity.  A fully connected net with 𝑁 units can only 

store around 0.15𝑁 memories while requiring 𝑁2 weights, resulting in a poor memory density.864 

Another application for Hopfield networks is discussed later, in §4.3.3.1. 

4.3.2.2.1. CELLULAR NEURAL NETWORKS 

The cellular neural network865 (CeNN) is a non-Boolean computing architecture that contains an array of computing cells that 

are connected to nearby cells.  Since interconnects are major limitations in modern VLSI systems, CeNN systems take 

advantage of the local communication and encounter fewer constraints imposed by interconnects. The CeNN is a brain-inspired 

computing architecture that relies on neurons to integrate the incoming currents. The accumulated and activated output signal 

drives nearby neurons through weighted synapses. CeNNs can be used to create associative memories for voice and image 

recognition. 

CMOS based CeNNs can be implemented by analog circuits using operational amplifiers and operational transconductance 

amplifiers (OTAs) as neurons and synapses, respectively.866,867 Some recent work has also investigated CeNN using beyond-

CMOS charge-based devices, such as TFETs, to potentially improve energy efficiency868,869 thanks to their steep subthreshold 

slope and low operating voltage.  
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Using novel devices such as all-spin logic (ASL),870 charge-coupled spin logic (CSL),871 and domain wall logic (mLogic)872 

whose dynamics match the dynamical state of cells in CeNN can be far more efficient than op-amp and OTA based CeNNs.  

The use of these different devices has been benchmarked.873 It was shown that the digital CeNNs are quite power hungry and 

slow. This is because multiple cycles are required to read out the weights from the register and perform the summation in the 

adder, which is energy and time consuming. In general, analog CeNNs implemented by TFETs dissipate less energy thanks to 

their steep subthreshold slope and lower supply voltage.  In contrast to Boolean circuits, spintronic devices are more 

competitive. This is because a single magnet can mimic the functionality of a neuron, and these spintronic devices operate at a 

low supply voltage. The domain wall device provides the best performance, in terms of energy-delay product, thanks to its low 

critical current requirement. 

4.3.2.3. DIFFERENTIAL EQUATION MODELING  

The circuit dynamics of CMOS systems can serve as computational primitives for solving differential equations. The premise 

of this style of computing is to map continuous-valued and continuous-time solutions to ordinary differential equations onto the 

currents and voltages of analog electronic circuits, the dynamics of which are also described by ODEs. This basic idea of 

analog computing for solving ODEs originated in mid-20th Century analog computers and was extended to combine analog and 

digital representations to offer a wider tradeoff of dynamic range and precision.874 The idea of analog computing has since been 

revisited in CMOS; the implementations in modern device technologies demonstrate reconfigurability, scalability, and energy 

efficiency.875,876,877,878 

The fundamental operation of solving ODEs is integration, which in analog computers is carried out via capacitors that 

integrate current over time. To form arbitrarily complex systems of ODEs, the analog computer can include constant coefficient 

multipliers, variable-variable multipliers, and summers to construct polynomial functions, and non-polynomial functions can 

also be made via hybrid techniques that involve lookup tables.879, 880 An important extension to ODEs in the form of stochastic 

differential equations can be tackled by introducing controllable noise sources.881 

Using analog systems to solve ODEs confers several benefits. 1) Deeply embedded cyber-physical systems can take advantage 

of analog computation to eliminate the need to digitize analog sensory inputs and actuator outputs. 2) Analog integration avoids 

some difficulties in algorithmic numerical integration on digital architectures such as round-off error due to digital 

representations and truncation error due to numerical approximations.882 3) With appropriate design of the analog circuits, 

analog computing can handle numerical difficulties due to stiffness in the ODEs being solved. 

Potential downsides include: 1) Difficulty in realizing more advanced ODE solving algorithms such as high-order quadrature. 

2) Difficulty in offering both high dynamic range and high precision due to physical costs in area and power consumption. 3) 

Difficulty in implementing in device technologies that are not optimized for mixed-signal design. 

Solving partial differential equations (PDEs) is even more important to modern scientific computation than solving ODEs. In 

PDEs, problem variables span space in addition to time. This class of problems introduces a wide range of options in terms of 

whether continuous space, time, and variable values are discretized. A guiding principle for research in this area is to survey the 

taxonomy of PDE types and demonstrate analog computer implementations of key benchmark solution methods and problems, 

such as the finite-difference time-domain approach to Maxwell’s equations.883,884 Given the sheer diversity in PDE problem 

types and numerical methods supported by digital high-performance computers, a fruitful approach has been to retain the space 

and time discretization steps in numerical methods for PDEs, and only map the core ODE solving kernels to analog co-

processors. 

An even broader use case for analog computing is to use the circuit dynamics to solve algebraic and satisfiability problems 

entirely outside of differential equations.885 The key idea here is to view the differential equations as a continuous interpolation 

of problem variables as they get updated over the course of discrete algorithm steps. For example, steepest gradient descent 

algorithms for linear optimization can be rephrased as ODEs such that analog computers can tackle linear algebra. 886,887 

Likewise, Newton methods can be rephrased such that analog computers can provide initial seeds for solving nonlinear systems 

of equations.888 

4.3.2.4. HARDWARE-BASED RESERVOIR COMPUTING AND LIQUID STATE MACHINES 

Software-based reservoir computing (RC) arose from the surprising insight that a single randomly connected recurrent neural 

network can be tailored to solve various tasks solely by means of adjusting its output weights.889 Time dependent signals are 

nonlinearly transformed into a new, random high-dimensional basis and then a conventional machine learning algorithm is used 

to make predictions from the new basis set. Hardware-based RC uses physical systems whose temporal evolution—much as in 

dynamical systems computing (see §4.2.3 below)—form the basis of computation.890 Such hardware need not implement 

tunable weights that add considerable complexity to hardware accelerators of neural networks. These systems are well-suited to 

time-series data processing and forecasting tasks such as learning to emulate a chaotic attractor,890 though they are generally 
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limited to supervised learning. Naturally, a wide variety of systems have been pressed into service as reservoirs, including 

photonic,891,892 mechanical,893 electronic,894,895,896 spintronic,897 and more recently superconducting systems898 among many 

others. An active area of research is extending RC into the quantum regime whose large Hilbert space dimensions may afford 

additional reservoir performance.899,900 Spiking neural networks (see §4.2.2.3 above) can also be used for RC, though this is 

typically referred to as liquid state machine (LSM) computing.901 The possibility also exists to create “deep” hardware RC 

architectures,902 and to otherwise combine RCs with other novel computing paradigms in order to combine their strengths. 

Other approaches such as recurrent neural networks (and structured variants such as long short-term memory) are also suitable 

for processing temporal data. However, these approaches are difficult to train and may struggle with complex nonlinear 

dynamics across many timescales 

4.3.2.5. SUB-KT CHAOTIC LOGIC AND CHAOS COMPUTING 

Shannon’s noisy channel coding theorem903 shows that one can reliably communicate information on a channel subject to noise 

(at a sufficiently low bit-rate) even when the transmitted signal power is below the noise floor (i.e., at a signal-to-noise ratio of 

less than 1). Moreover, any computational process can be viewed as just a special case of a communication channel, namely, 

one that simply happens to transform the encoded data in transit—since the derivation of Shannon’s theorem relies solely on 

counting distinguishable signals, and nothing about how the signals are being counted in Shannon’s argument precludes the 

encoded data from being transformed as it passes through the channel. This observation suggests that performing reliable 

computation utilizing signal energies (that is, energies associated with the information-bearing variability in the dynamical 

degrees of freedom in the system) that are at average levels ≪ 𝑘𝑇 (i.e., well below the thermal noise floor) should theoretically 

also be possible—although the output bit rate (per unit signal bandwidth) will scale down with the average signal energy.  

In 2016, Frank and DeBenedictis investigated a theoretical approach for implementing digital computation using chaotic 

dynamical systems,904,905,906 which provided evidence that the above theoretical observation is correct. In that approach, the 

long-term average value of a chaotically evolving dynamical degree of freedom encodes a digital bit. The interactions between 

degrees of freedom are tailored such that the bit-values represented by different degrees of freedom correspond to the results 

that would be computed in an ordinary Boolean circuit. This method can also be considered to be related to analog energy-

minimization-based approaches (§4.3.3.1). However, this method does not require cooling the system to low noise temperatures 

for annealing, as is frequently done in energy-minimization approaches. Instead, the dynamical network uses a variation on 

reversible computing principles (§4.3.4) to adiabatically cause the system to transition between different warm, chaotic “strange 

attractors” that represent different computational states; this transformation can take place reversibly, without energy loss. The 

dynamical energy of the signal variables is itself conserved within the (Hamiltonian) dynamical system, and so the total energy 

dissipated per result computed can approach zero in this model as the rate of transformation decreases.  

One disadvantage of the particular approach explored in that work is that it exhibits an apparent exponential increase in the real 

time required for convergence of the results as the complexity of the computation (number of logic gates) increases. However, 

as far as is known at this time, it is conceivable that faster variations on this or similar techniques might be found with further 

investigation. 

An earlier, more extensively developed proposal that is similar to the chaotic logic concept is called chaos computing.907 

4.3.3. PROBABILISTIC SYSTEMS 

Traditionally, conventional computational processes are designed to be deterministic, with computational results determined by 

the machine’s initial state and inputs.  Nevertheless, computations that are intentionally designed to behave randomly or 

stochastically, even at the level of individual bit-operations, are of interest and can have many useful applications in naturally 

probabilistic tasks. Applications of this approach include powerful statistical sampling algorithms used in Monte Carlo 

simulation (Markov Chain Monte Carlo, direct sampling, simulated annealing, parallel Temperin, etc.), machine learning and 

artificial intelligence algorithms (Bayesian networks, Boltzmann machines, deep Boltzmann machines), randomized 

algorithms908,909 as studied in computational complexity theory, and cryptographically secure random number generation for 

generating secure private keys. Noise in biological neurons is beneficial for information processing in nonlinear systems and is 

essential for computation and learning in cortical microcircuits.910,911,912,913   

Obtaining randomness in traditional CMOS is difficult and typically relies on costly pseudo-random number generators.  This 

requires a large circuit block and significant computational effort to obtain high quality random numbers.  Several new devices 

have been proposed to obtain true randomness as discussed in §4.4.3.  These allow for a random bit to be generated with a 

single device, often leveraging the intrinsic noise out of natural phenomena.  Chaotic devices can be used to turn poor quality 

randomness into high quality random numbers914.   



Emerging Device-Architecture Interaction  54 

 

THE INTERNATIONAL ROADMAP FOR DEVICES AND SYSTEMS: 2023 

COPYRIGHT © 2023 IEEE. ALL RIGHTS RESERVED. 

One example of probabilistic computation is achieved by p-bits. The main function of a p-bit is to provide tunable randomness 

of a digitized voltage at its output terminal controlled by an analog input terminal.932,933  The main advantage of a device-based 

p-bit comes from its compact, low-power implementation of a complex functionality (tunable randomness) compared to digital 

implementations.940 In the context of machine learning, this functionality is an approximate hardware representation of a binary 

stochastic neuron, allowing a natural mapping of powerful algorithms developed for such stochastic neural networks.  

4.3.3.1. STOCHASTIC/CHAOTIC OPTIMIZATION—SIMULATED ANNEALING 

Many of the optimization problems that are found in modern operations research—such as routing, scheduling, and other types 

of resource allocation—are intractably hard. Consider this example: finding an optimal route among three cities can be done 

using the digits on two hands, but with 15 cities, we are left with more than 40 billion routes to choose from. As the size of the 

problem grows, the resources needed to solve the problem increases exponentially. Finding even approximate solutions to large 

combinatorial optimization problems are prohibitively resource-intensive with the best supercomputers we have. Exact 

solutions to these problems are known in computational complexity theory to be NP-hard (non-deterministic polynomial time 

hard), meaning that it is too hard for any computer, analog or digital, to solve exactly, in general, and specifically at large scale. 

However, there are many ways to compute approximate solutions, meaning finding a good solution but not necessarily the best 

one.  In recognition of this, there have been many analog hardware approaches that exploit the inherent computational ability 

and parallelism in physical processes to solve these hard optimization problems.  

An example solution uses energy minimization using multiple runs on a Hopfield network (§4.3.2.2).915 A Hopfield network is 

a popular neural network with its output being calculated via a simple decision system (e.g., thresholding of input), which is 

then weighted and fed back to its input. The feedback weights define an energy landscape based on values emerging from the 

output. If a Hopfield network is initialized to a particular value, the network will follow a trajectory that will take it to a 

minimum, or local minimum, of the energy landscape. 

As an example, consider using a Hopfield network to solve the Traveling Salesman Problem. The Traveling Salesman Problem 

is to find the best route for a salesman that needs to visit a series of cities, each pair separated by some distance. The salesman 

seeks the shortest route that visits each city exactly once and then returns to the starting city. In an analog system the weights 

are set to encode the intercity distances. The system drives the outputs to a starting point for the salesman’s route. The system 

will settle into a candidate salesman’s route in an amount of time equal to a few time constants of the feedback loop. 

The method described above may find the ideal solution, or just a better but suboptimal solution. To improve the odds of 

finding the best solution, the circuit can include either a true random noise generator or a chaotic pseudo-random noise 

generator. Under control of an external digital computer, the Hopfield network is driven to a random starting point and released 

many times in a cycle. The randomness causes many of the starting points to be different, making it more likely that the system 

will find the global minimum. The digital computer collects all the results, checking each to see which is best. 

Such a system leverages multiple new circuit blocks including both a crossbar to encode the 𝑛 intercity distances (that can be 

built using memristors), an analog neuron to run the Hopfield network, and either chaos or a noise generator to get randomness. 

As the Traveling Salesman problem is NP-hard, no solution method can solve it exactly at scale. Nevertheless, the analog 

solution seems to be at least comparable in efficiency with some software algorithms. For instance, a memristor based Hopfield 

network has been built.916 

Another important application for combinatorial optimization, specifically graph coloring, was described 917 and developed 

theoretically with support from experimental demonstrations using relaxation oscillators based on phase-change IMT materials. 

An architecture based on non-repeating phase relations918 between fabricated CMOS oscillators tries to emulate stochastic local 

search (SLS) for constraint satisfaction problems.   

Recently, solving hard combinatorial optimization problems with powerful sampling algorithms such as simulated annealing 

and parallel tempering has received significant attention from the circuit design and architecture communities. Many special 

CMOS solvers from companies (Hitachi919, Fujitsu920, Toshiba921, and others) and academic laboratories922,923,924 to solve hard 

optimization problems have been designed and implemented to solve select optimization problems.  These special purpose 

computing systems, sometimes, called Ising Machines map the underlying mathematics of generalized Ising Models to their 

computing architecture to accelerate the sampling of Ising Models. Such generalized Ising Models have been shown to map to 

many combinatorial optimization problems925 and have been compared to D-Wave, despite the technical difference between D-

Wave's simulated quantum annealing machines.   

4.3.3.2. MONTE CARLO SIMULATION 

Probabilistic circuits have also been discussed in the context of traditional Monte Carlo simulation926.  A broad application of 

Monte Carlo simulation is that of integration. At high dimensions, Monte Carlo integration is known to scale better than 
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deterministic numerical integration techniques927 and probabilistic circuits accelerating Monte Carlo simulations can potentially 

result in energy and area savings with massively parallel probabilistic bits in hardware.  

4.3.3.3. CRYPTOGRAPHY 

Digital computers often rely on pseudo-random number generators that produce random numbers deterministically given an 

input seed. For cryptographic applications, certifiable true random number generation (TRNGs) is an important requirement 

and many stochastic noise sources can be used to generate TRNGs.  Among others, optoelectronic (single photon avalanche 

diodes928), magnetic (magnetic tunnel junctions929) and metal-insulator phase transition930 (stochasticity in VO2 transitions) 

based true random number generators have been proposed and tested against statistical suites to test the quality of randomness.  

4.3.3.4. PROBABILISTIC (P)- LOGIC 

In a series of recent papers, Camsari, Datta and collaborators proposed a type of probabilistic computing model introducing the 

concept of p-bits and p-circuits.931,932 The authors explored how p-bits can be compactly realized by leveraging existing 

magnetoresistive RAM (MRAM) technology933 and showed different applications of p-circuits including image recognition 

(inference),934  combinatorial optimization 935 ,936  Bayesian networks,937  and an enhanced type of Boolean logic that allows 

invertible operation.932 More recently, potential applications have been extended to include emulation of a class of quantum 

systems 938  and on-chip learning for stochastic neural networks. 939  Further, a prototype realization of an 8 p-bit circuit 

demonstrating a quantum-inspired integer factorization algorithm that uses MRAM-based p-bits has recently been realized.940  

The tunability allows a network of p-bits (p-circuits) to be able to get correlated with one another when appropriately connected 

through a programmable feedback circuit. The p-bit concept is hardware agnostic and digital implementations of invertible 

logic have been realized,941,942 The generic p-circuit consists of autonomously operating p-bits without any digital clocking 

circuitry, leading to a massively parallel architecture whose performance increases with the number of p-bits in the system.943 

Recent breakthroughs in modern MRAM industry have led to production-ready integrated chips with up to 1 Gb cell densities, 

thus leveraging this technology could lead to application specific probabilistic coprocessors with broad applications for the 

active fields of Quantum Computing and Machine Learning.944  

4.3.4. REVERSIBLE COMPUTING 

Referring back to Figure BC4.2, we can see that, besides analog computing and probabilistic computing, a third dimension 

along which we may explore departures from the conventional computing paradigm is reversible computing.945  In the present 

context, when we say that a computation is reversible, we mean that the lowest-level physical computational processes should 

be arranged to approach a condition of being both logically reversible and thermodynamically reversible. To say that a 

computational process is logically reversible means that known (or deterministically computed) information is not obliviously 

discarded from the digital state of the machine and ejected to a randomizing thermal environment. To say that the computation 

process approaches being thermodynamically reversible here means that the total increase in physical entropy incurred by the 

machine’s operation per useful computational operation performed should be extremely small, with the vision that this quantity 

can approach zero asymptotically as the technology continues to be improved.  

In 1961, Rolf Landauer of IBM argued946 that there is a fundamental physical limit on the energy efficiency of conventional 

irreversible digital operations, meaning those that carry out a many-to-one transformation of the space of computational states 

that is used. Landauer’s limit states that an amount kT ln 2 of available energy (where k is Boltzmann’s constant and T is the 

temperature of the heat bath) must be (irreversibly) dissipated to heat per bit’s worth of (known or correlated) information that 

is lost from the computational state. Landauer’s limit can be rigorously derived from fundamental physical 

considerations.681,947,948  

An important caveat to be aware of is that Landauer’s limit only applies to computational information that is correlated with 

other available information, as opposed to independent random information.681, 949 ,948  A computational bit that bears no 

correlations with other available bits is, in effect, already entropy, and thus it can be transferred back and forth between a stable, 

digital form in a computer and a rapidly-fluctuating physical form in a thermal environment with asymptotically zero net 

increase in total entropy, by, for example, adiabatically raising and lowering a potential energy barrier separating two 

degenerate states.681  

However, most bits in a digital computer are correlated bits, having been computed deterministically from other available bits. 

Performing a many-to-one transformation such as destructively overwriting or erasing such a bit obliviously (i.e., without 

regards to its existing correlations) therefore typically increases total entropy by one bit’s worth (k ln 2) and thus implies at least 

kT ln 2 energy consumption (loss of available energy). Fundamentally, then, the only way to avoid Landauer’s limit, in a 

deterministic computational process, is to avoid many-to-one transformations of the computational state. Bennett950 showed that 

indeed, this is always possible; that is, any desired irreversible computation can always be embedded into a functionally 
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equivalent reversible one. Such an embedding generally appears to incur some algorithmic overheads, 951 , 952  in terms of 

(abstract) time or space complexity, but if reversible devices continue to become cheaper and more energy-efficient over time, 

then, in principle, these resource overheads can be outweighed by the achievable energy savings, and total cost may be reduced 

compared to an irreversible design.953 In the long run, reversible computing is the only physically possible path by which the 

amount of general digital computation that can be performed per unit energy (and cost!) might continue to be increased 

indefinitely, without any known fundamental limit.681 

In existing adiabatic implementations of reversible computing in today’s device technologies (see §§4.3.4.1–4.3.4.3 below), 

one typically finds that there is a linear tradeoff, at the device level, between the energy dissipation 𝐸diss resulting from, and the 

time interval or delay 𝑡del required to carry out, a given primitive digital operation in the adiabatic limit. We can express this 

tradeoff relation by stating that the dissipation-delay product (DdP) of the technology is a constant, over some range of 

achievable delay values. E.g., within that range, we can write 

𝐸diss ⋅ 𝑡del ≅ 𝑐E, 

where 𝑐E is the constant DdP, which we may also call the energy coefficient of the technology.  Further, a very new analysis954 

suggests that asymptotically, this tradeoff relation may even be fundamental; that is, that it may apply to all physically possible 

implementation technologies for reversible computing.  Nevertheless, other analyses 955 , 956  suggest that an exponential 

downscaling of energy dissipation with delay may sometimes be possible, within a limited regime, when quantum effects are 

leveraged, and the system is well-isolated from the thermal bath. However, even among cases where the linear relation still 

applies, there are no known technology-independent lower bounds on the value of the dissipation-delay constant. Although 

there are indeed firm quantum lower limits on the product of energy invested in performing an operation times the delay,957 

there are no known fundamental lower limits above zero on energy dissipated for any given delay value. Further, even when a 

fixed value of the constant is given, thermally limited parallel processors can still benefit from reversible computing in terms of 

their aggregate performance. For example, in cooling-limited stacked 3D logic scenarios, the per-area performance advantage 

of time-proportionally adiabatic technologies increases with the square root of 3D processor thickness.958,953 And in loosely-

coupled, arbitrarily-massively-parallelizable applications with fixed power budgets, the aggregate performance gain from 

adiabatic computing scales up with energy efficiency arbitrarily far, at least up to astronomical scales.953,954 

However, as of today, experimentally realizing reversible computing’s promise to vastly exceed the system-level energy 

efficiency of all conventional computers in practice remains a difficult engineering challenge. Although a variety of different 

adiabatic959,960,961,962,963,964,965,966,967 and ballistic968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985 schemes for the realization of 

reversible computation have been proposed, it has so far turned out to be challenging to actually achieve large energy efficiency 

gains at the system level in practice while accounting for all of the complexity overheads that are incurred from using a mostly-

reversible design discipline, together with a variety of real-world parasitic energy dissipation mechanisms that exist and would 

need to be systematically eliminated or reduced. (See §4.3.4.4 for further discussion.) There is not (yet) any known “magic 

bullet” physical implementation strategy that automatically addresses all of the many possible energy-loss mechanisms that 

would typically exist in a complete computing system all at once. Logical reversibility (when suitably generalized682) is indeed 

a necessary condition for approaching physical reversibility in deterministic digital computations, but it is by no means a 

sufficient one.   

However, while approaching the ideal of physically reversible computing is by no means an easy path forward, it is the only 

way that general digital computing can continue to move forward indefinitely, with no clear limits in the foreseeable future—in 

contrast with the conventional, non-reversible computing paradigm, which is necessarily limited by Landauer’s principle.681 

Plausibly, even in CMOS, adiabatic circuits might be able to demonstrate useful energy efficiency gains for highly energy-

limited applications (such as spacecraft) even in the relatively near term if sufficiently high-Q resonators can be 

developed.986,987 Further, even some of the existing reversible superconducting logic styles (such as RQFP988,989,990,991,992,993 and 

nSQUID994,995,996 logic) already appear to be capable of achieving energy dissipation below the Landauer limit in principle, 

although the available analyses don’t include dissipation in the clock-power supply.  However, in cryogenic applications, if the 

dissipation in the power supply can take place in a higher-temperature exterior environment, this can translate to a significant 

and highly practically useful reduction in the amount of power that is dissipated internally within the low-temperature 

system.683,684,987 Finally, superconducting technologies operate with extremely small signal energies, which, if transferred 

nondissipatively to the room-temperature environment, become relatively insignificant in absolute terms; this can reduce 

pressure on AC supply design even for general HPC applications.  See §4.3.4.2 below for further discussion of superconducting 

reversible computing technologies. 

Reversible computing can also be potentially usefully combined with probabilistic computing (§4.3.3); if random digital bits 

are obtained by taking in entropy from the thermal environment and capturing it in a stable form, this can actually reduce 

environment entropy temporarily—albeit without reducing total entropy, of course, since the entropy of the digital state is 
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increased.681 Once a randomized reversible computation utilizing such bits of “true” entropy has completed, those random bits 

can later be returned to the thermal environment with no net thermodynamic cost.681 Thus, the requirement for such a 

nondeterministic computation to be thermodynamically reversible is somewhat looser than is the case for a deterministic 

computation; many-to-one (irreversible) transformations can be permitted together with compensating one-to-many 

(nondeterministic) transformations in a computation,997 so long as, overall over the course of the computation, previously-

established correlations are not lost. 

Reversible computing is normally conceived of as a strategy for making digital computation more energy efficient. More 

generally, can a broad variety of analog computing schemes be developed that are also thermodynamically reversible? Record 

energy efficiencies for charge-based analog vector-matrix multiplication have been demonstrated using adiabatic principles as 

discussed in §4.2.3.3.998 Further, fundamental physics is reversible at the microscale, which suggests that a sufficiently carefully 

engineered analog computer might be made to approach macroscopic reversibility, and that its energy efficiency might thus be 

increased without limit as its technology is further refined. The degrees of freedom utilized for the analog physical computation 

would likely have to be very well-isolated from the system’s thermal degrees of freedom, and the usual tendency for complex 

dynamical systems to devolve towards chaotic behavior would have to be suppressed in some way, or else made into a useful 

feature of the computational process, such as in reservoir computing (see §4.3.2.4 above). Also, the previously mentioned work 

on chaotic logic (§4.3.2.5) suggests a potential technique for harnessing the chaotic analog behavior of conservative dynamical 

systems usefully for general digital computational purposes, but many other, more sophisticated methods may be possible. 

4.3.4.1. REVERSIBLE ADIABATIC CMOS 

As mentioned above, currently the most well-developed implementation technologies for reversible computing are those that 

utilize classical quasi-adiabatic transformations to carry out digital state transitions.  Among such technologies, the most well-

developed class of them at present has been referred to variously as adiabatic CMOS, adiabatic transistor circuits,684 or just 

adiabatic circuits.  In traditional (irreversible, non-adiabatic) CMOS circuits, the full digital circuit-node signal energy of ½CV2 

is dissipated to heat on every digital switching event. In contrast, the use of classical quasi-adiabatic transitions for switching 

reduces the associated local dissipation by a factor of ~t/2RC, where t is the transition time for a linear voltage ramp and R is 

the resistance of the charging path. This reduction yields a linear tradeoff between speed and energy dissipation per operation 

over a certain range of frequencies, where the dissipation-delay product or energy coefficient scales as 𝑐E ∝ 𝐶2𝑉2𝑅. 

The earliest complete circuit families for sequential, pipelined reversible computing with adiabatic CMOS were developed in 

the 1990s in Tom Knight’s group at MIT.962,999,1000,1001,1002,1003  These methods did not gain widespread traction at the time, 

perhaps in part because, to save energy, adiabatic CMOS must operate relatively slowly compared to the inherent RC 

propagation delay of the gates. However, in the period since the end of Dennard scaling in ~2005, multi-core processor 

performance has become increasingly limited by power dissipation rather than by raw gate delays (witness the increasing 

amounts of “dark silicon” in modern processor designs), so, revisiting the adiabatic energy-delay tradeoff appears timely at 

present.  Adiabatic switching holds promise as a design technique for the future, since it offers a means by which the 

dissipation-delay pareto frontier of any given CMOS technology might be expanded beyond the limits of what can be achieved 

using more conventional low-power design techniques, such as subthreshold operation.987 

Subsequent to the original MIT adiabatic logic families cited above, a number of other adiabatic logic design styles were also 

explored, such as two-level adiabatic logic (2LAL),964,1004 positive feedback logic (PFAL),1005,1006 and efficient charge recovery 

logic (ECRL).1007,1008 In addition, applications to the design of secure circuits have also been explored, since the unique 

electrical behavior of adiabatic CMOS circuits can help to prevent non-invasive side channel attacks.1009,1010 And, general-

purpose computing has been pursued in the design of adiabatic microprocessors.1011,1012 Simulation results 1012 indicate that, 

when operated adiabatically, advanced CMOS nodes can dissipate 1-2 orders of magnitude less energy per cycle than 

irreversible operation at relatively high frequencies(1-5 GHz). 

Another very recent development is the introduction of fully adiabatic CMOS logic families that are also fully static,1013,1014 

meaning that all nodes are at all times connected to a supply reference, which eliminates voltage-level drift from leakage and 

capacitively-induced voltage sag, which could otherwise occur on floating notes and contribute to non-adiabatic losses.  In 

principle, as leakage is reduced, these “perfectly adiabatic” logic styles are predicted to be capable of exceeding the energy 

efficiency of any other semiconductor-based form of digital logic. 

4.3.4.2. REVERSIBLE ADIABATIC SUPERCONDUCTING LOGIC  

After adiabatic CMOS, currently the second most well-developed type of hardware technology for reversible computing based 

on classical adiabatic transformations is the class of adiabatic superconducting logic families.959–960,965,988–995 A significant 

motivation for the consideration of superconducting circuits for energy-efficient computation is the lossless nature of charge 

transport in Josephson junctions and superconducting wires, which act as switching elements and interconnects, respectively. 

Also, the naturally discrete phenomenon of flux quantization facilitates the restoration and stabilization of digital signals. 
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Two basic families of superconducting reversible digital elements, the parametric quantron (PQ)959 and quantum flux 

parametron (QFP)1015,960 were proposed in early studies.  Both approaches were based conceptually on the abstract physical 

model of adiabatic digital operations introduced by Landauer,946,950 in which the potential energy function of the digital element 

is transformed adiabatically between single-well and double-well configurations in the course of an operation. As with adiabatic 

CMOS, superconducting reversible logic gates utilizing this approach require AC driving waveforms, in this case to provide a 

time-dependent flux bias to each gate. More recently, a DC-powered superconducting reversible logic gate based on a negative-

inductance SQUID (nSQUID) was proposed,1016 and its energy dissipation was estimated to be a few kT per reversible bit-

operation.994 

Recently, a further reduction of the energy dissipation of the QFP approach was achieved by appropriately optimizing the 

circuit parameters for the adiabatic mode of operation965 and eliminating the junction shunt resistance. 1017  The energy 

dissipation of this improved adiabatic QFP (AQFP) was investigated numerically, taking thermal noise into account,1018 and 

found to be well below kT with a low error rate.988 The energy dissipation of a single AQFP gate was estimated to be 10 zJ per 

gate at 5 GHz by measuring the scattering parameters of a superconducting resonator coupled to an AQFP gate.1019 The energy 

dissipation per operation of an (irreversible) AQFP 8-b carry-lookahead adder was experimentally evaluated to be 24 kT per 

Josephson junction.1020 

The first demonstration of logically and physically reversible operation of superconducting logic was performed using a newer 

reversible QFP (RQFP) design style.989 The basic RQFP element is a logic gate having three binary inputs x0, x1, x2 and three 

outputs y0, y1, y2 that are related by 

(𝑦0 , 𝑦1, 𝑦2) = (MAJ(𝑥0̅̅ ̅, 𝑥1, 𝑥2), MAJ(𝑥0, 𝑥1̅̅̅, 𝑥2), MAJ(𝑥0, 𝑥1, 𝑥2̅̅ ̅)) 

where MAJ(𝑖, 𝑗, 𝑘) = (𝑖 ∧ 𝑗) ∨ (𝑗 ∧ 𝑘) ∨ (𝑘 ∧ 𝑖).  This logically reversible element is composed of three AQFP splitter gates and 

three AQFP majority gates.  The bidirectionality and time reversal symmetry of the RQFP gate were investigated, revealing the 

cause of the energy dissipation in logically irreversible AQFP logic.990 Using RQFP gates, the functionality of 1-bit993 and 8-

bit1021 reversible full adders and an 8-word by 1-bit RQFP register file1022 were demonstrated, and their energy dissipation was 

numerically calculated, while accounting for thermal noise.993  It was found that the energy dissipation of the reversible full 

adder is much lower than that of the irreversible full adder; it becomes lower than the kT thermal energy at 4.2 K at frequencies 

below 20 MHz. As the frequency is lowered below 1 GHz the energy dissipation of the irreversible full adder is constant, while 

the dissipation of the reversible adder decreases proportional to the decrease in frequency.  

4.3.4.3. OTHER REVERSIBLE TECHNOLOGY CONCEPTS 

Beyond the adiabatic semiconductor/superconductor technologies discussed in §§4.3.4.1–4.3.4.2 above, over the years, a rather 

wide variety of disparate aspirational concepts for physical implementation technologies for adiabatic reversible computing 

have been described in the literature, although typically without accompanying physical demonstrations as of yet. 

In the 1980s, the pioneering nanotechnology visionary K. Eric Drexler at MIT outlined a variety of concepts for nanoscale 

computing technologies, including adiabatic reversible versions, that were based on nanoscale mechanical, rather than electrical, 

interactions.1023,1024,961,1025 More recently, a group led by Ralph Merkle at the Institute for Molecular Manufacturing (IMM) has 

been developing an even more advanced nanomechanical reversible logic concept based on (single-atomic-bond) rotary 

bearings, which were analyzed to dissipate as little as ~4×10−26 J per operation at room temperature at speeds of 100 MHz.966,967 

This is roughly 74,000× lower energy than the Landauer limit at 300 K, and roughly 106× smaller dissipation-delay product 

(DdP) than even end-of-roadmap CMOS. Although we do not yet have a nanomanufacturing technology that is capable of 

fabricating the atomically precise nanostructures envisioned in the IMM designs, this analysis nevertheless suggests how much 

farther the dissipation-delay frontier might someday be extended, beyond what is possible in today’s semiconductor- and 

superconductor-based technologies. 

Meanwhile, back in the electronic domain, since the 1990s, a number of adiabatic reversible computing concepts based on 

single-electron devices have been proposed.963,1026,955,1027 Notable among these is the quantum-dot cellular automata (QCA or 

QDCA) technology concept pioneered at Notre Dame, which has been taken up to the level of complete simulated processor 

designs.1028,1029 However, there is not, as of yet, a viable manufacturing process for fabricating scalable QCA-based processors. 

To conclude our review of the adiabatic approaches, we mention in passing an interesting concept for adiabatic capacitive 

logic,1030,1031,1032 which avoids the limitations on the efficiency of adiabatic CMOS due to leakage. 

In addition to the various adiabatic approaches to reversible computing, there are also a number of ballistic reversible 

computing concepts.968–985 These are based on a rather different picture of the basic physical mechanism of reversible 

computing than the adiabatic approach suggested by Landauer.946 In the adiabatic approach, some external system (i.e., separate 

from the logic circuits) drives the adiabatic transformations of the computing system that carry out transitions between digital 
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states.  Whereas, in the ballistic picture, first conceived by Ed Fredkin,968 the physically reversible dynamics of the system is 

instead self-contained; in other words, individual entities (such as particles or pulses) carrying information-bearing degrees of 

freedom evolve forwards reversibly under their own (generalized) inertia, as it were, with no direct external influence.   

We should note that the distinction between the two classes of approaches is not a perfectly crisp one, since, even in the 

adiabatic approach, the driving system (such as a resonant oscillator) can be viewed as evolving ballistically, and even in the 

ballistic approach, the interactions (e.g., elastic collisions) between individual ballistically-propagating information-bearing 

entities can be analyzed, on a sufficiently fine timescale, as adiabatic processes. So, to some extent, the distinction between the 

approaches is primarily just one of perspective and emphasis. However, generally speaking, the adiabatic approaches are 

characterized by a large-scale separation of the ballistic driving systems from the adiabatic logic transitions being driven, 

whereas in the ballistic approaches, the ballistic properties are distributed throughout the system, and are associated to the 

lowest-level information-bearing entities themselves.  We can also imagine that other, future approaches could interpolate 

between these two extremes. E.g., one could imagine systems comprising large numbers of small ballistic oscillators, each 

driving just a small region of local adiabatic logic, with the various subsystems communicating timing information and data to 

each other via elastic interactions transmitted via (short- or long-range) couplings between individual oscillators. 

In terms of practical realizations of a (fully-distributed) ballistic approach to reversible computing, the approaches to this that 

have been developed most intensively to date are based on superconducting electronics.970–985 This is a particularly convenient 

technology for ballistic computing, because, unlike in semiconductors, superconductors exhibit the phenomenon of naturally-

discrete single flux quanta (SFQ), which can propagate near-ballistically along interconnects consisting of passive transmission 

lines (PTLs)1033 or long Josephson junctions (LJJs).1034  Currently active efforts to develop reversible computing technologies 

focused on SFQ-based approaches include the synchronous ballistic approach, which has been explored since around 2010 at U. 

Maryland,974–978,983–984 and the asynchronous ballistic approach, which has been in development since 2016 at Sandia National 

Laboratories.979–982,985,1035  

4.3.4.4. CHALLENGES FOR REVERSIBLE COMPUTING 

Despite the great long-term promise of reversible computing, many fundamental engineering challenges associated with the 

development of a practical reversible computing technology remain to be solved at this time.  These include the following: 

• Even at the level of very basic physics, a more complete understanding is needed of the fundamental (technology-

independent) physical limitations of important cost metrics for reversible computing, such as the dissipation-delay product 

(DdP), or, more generally, energy dissipation as a function of delay, 𝐸diss(𝑡del).  An important question is:  Are there 

universal lower bounds on this quantity that we can derive based on parameters such as temperature, or the length scale of 

devices, or perhaps based on some kind of generalized viscosity characteristics, or on other fundamental physical or 

materials-dependent parameters?1036,1037,948 

• New, more complete abstract (but still realistic) physical models of reversible computing should be crafted to illustrate how 

we might more closely saturate the above fundamental limits in real artifacts, pointing the way to new device and circuit 

concepts for reversible computing. Are there quantum-mechanical approaches or phenomena that could be usefully 

harnessed, such as shortcuts to adiabaticity (STA),1038 topological invariants, dynamical variations of the quantum Zeno 

effect (QZE)1039,1040,954 or others, to help reversible computing technologies to further suppress the rate of entropy increase 

while still operating as quickly as possible? 

• Facilitated by fundamental advances such as the above, new device and circuit concepts for reversible computing need to 

be developed that significantly reduce 𝐸diss(𝑡del)  at useful operating speeds while still being inexpensively 

manufacturable.  Novel physical mechanisms for computing need to be developed with reversible operation in mind from 

the start. 

• Meanwhile, to advance the achievable energy efficiency of adiabatic CMOS for cryogenic applications, novel FET device 

structures that are optimized to minimize leakage at particular cryogenic temperatures of interest with minimal impact on 

device performance (expressed in terms of, say, DdP) need to be developed.987 

• For adiabatic reversible computing technologies operating at room temperature, the logic signal energy (e.g., ½CV2 in 

CMOS) remains a concern, since it still exists even in adiabatic circuits, and is merely transferred dynamically to the 

power-clock generator system, rather than being dissipated locally within the logic. Thus, to achieve significant overall 

energy savings at the system level, compared to the corresponding irreversible technology, this generator must be designed 

to efficiently recover a large fraction of this signal energy, e.g., by comprising a resonant oscillator with a high quality 

factor (Q). Designing extremely high-Q resonators and clock distribution networks already demands advanced, high-

precision engineering. Further, as RF designers know, achieving high Q implies narrow bandwidth. This in turn implies 
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that the returned clock waveform must be extremely pristine—e.g., any data-dependent back-action from the logic must be 

avoided. Thus, we must maintain a careful load balancing discipline, e.g., via complementary signaling. And if bulk 

semiconductors are used, this adds another level of challenges relating to time-varying loads during transitions, since 

device capacitances are more voltage-dependent when depletion regions are not structurally constrained.  Thus, fully 

depleted SOI, thin-film, or gate-all-around (GAA) nanosheet/nanowire FET geometries may be preferred. 

• At higher levels, many advances in areas such as reversible architectures, EDA tool enhancements to support reversible 

design styles, reversible algorithms952 and so forth still need to be developed.  As useful reversible computing hardware 

technologies emerge and develop, systems engineering practice will also need to evolve to best leverage the opportunities 

and tradeoffs offered by reversible design.953 However, all of these R&D areas remain in their infancy at this time. 

4.3.5. DIGITAL IN-MEMORY SYSTEMS 

4.3.5.1. BOOLEAN LOGIC OPERATIONS USING MEMORY 

Boolean operations are another class of operations that can be performed in situ using memory cells. Memories that can 

perform Boolean operations in situ typically share two key properties: (1) they can enable multiple cells and/or multiple 

rows/columns to be active simultaneously, (2) the analog interaction of the stored values in two or more of the memory’s cells 

produces an output that is a Boolean function of the cells. While it is not a strict requirement, Boolean-capable memories 

typically arrange their memory cells into two-dimensional arrays, which enables them to perform in situ Boolean operations on 

input memory cells that sit in the same row and/or column of the array as each other, and to store the result in an output 

memory cell that also sits in the same row and/or column as the input memory cells. The specific family of Boolean operations 

that can be performed using memory are highly dependent on the underlying memory technology and the architecture, as 

discussed below. 

Boolean operations can be performed using conventional bitline-based volatile memories (e.g., DRAM 1041 , 1042 , 1043 , 1044 , 

SRAM1045,1046,1047,1048,1049) by taking advantage of, and making minor modifications to, the access circuitry. As a motivating 

example, Boolean AND and OR operations can be performed between the DRAM cells and the sense amplifier that share a 

bitline in a conventional 1T1C DRAM1050. By simultaneously activating three cells on the same bitline, charge sharing shifts 

the bitline’s voltage slightly towards the average of the voltages stored in the three cells, causing the sense amplifier to drive a 

voltage that represents the majority (MAJ) function of the three cells. This 3-input MAJ function can be converted into 2-input 

AND or OR by presetting one of the three cells to 0 or 1, respectively. Additional support is required in the array to provide 

Boolean completeness, such as the inclusion of dedicated rows of DRAM cells with special inverted bitlines to enable 

NOT1042,1051. An alternative approach uses 3T1C DRAM cells to perform in-DRAM NOR operations1043. Similar architectures 

can be used to perform Boolean operations using SRAM1052,1048,1049, by taking advantage of the dual bitlines (one for the true 

value and one for the inverted value) connected to each SRAM cell and making minor modifications to the sensing circuitry to 

support multi-row reading. 

Recent works propose to perform Boolean operations using crossbar-based non-volatile memories (e.g., ReRAM1053,1054,1055, 

PCM1056, STT-MRAM1057,1058, SOT-MRAM1059). While the precise implementations differ based on the underlying memory 

technology, we discuss one such example, MAGIC1055, which can perform NOR operations in a ReRAM crossbar. For two 

input cells and one output cell connected to the same row line in a crossbar, MAGIC performs 2-input NOR by applying a fixed 

voltage by applying a column selection voltage of Vnor to the column lines connected to the two input cells, while keeping the 

row selection voltage of the row line with the three cells floating. (Note that we can also perform NOR on two input cells 

connected to the same column, but the voltages can differ.) By floating the row selection voltage, the current on the row line 

settles to a value that is equivalent to the NOR function of the two cells. Setting a column selection voltage of GND to the 

column line connected to the output cell stores the NOR value in the output cell. 

One downside of performing Boolean logic operations in memory is the long latency of performing common operations such as 

addition and multiplication, which often need to be performed in a bit-serial manner (or require additional arithmetic units in 

memory). To amortize these latencies, Boolean-capable memories typically perform bit-parallel operations on an entire row or 

column of data at a time1045,1051,1060. Recent works provide various architectural abstractions and/or frameworks that expose bit-

parallel operations as vector operations1045,1042,1060  or as single-instruction multiple-thread (SIMT; e.g., GPU) instructions1046. A 

key limiting factor of bit-parallel Boolean operations is the current carrying capacity of the crossbar wires1060. For example, in 

ReRAM, this limits practically achievable column-wide NOR to arrays where the column length is less than approximately 200 

cells, requiring other techniques (e.g., pipelining1060) to fully amortize the overheads of bit serialization. 

The Boolean-capable operations described above have been proposed for single-level cell memories (i.e., memories that store 

only one bit of data per cell). While this limitation reduces the information density compared to other in-memory functions that 
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can operate on multi-level cells, it eases the ability to fabricate logic-capable memories, by reducing the need to be sensitive to 

non-linear cell functions that can be difficult to control with peripheral circuitry. 

4.3.5.2. PROCESSING-NEAR-MEMORY CIRCUITS 

An alternative to in situ processing using memory cells is processing-near-memory (PNM) or near-memory processing, where 

dedicated logic elements for compute are integrated near (but not inside) a memory array1061. Logic elements for processing-

near-memory are made up of digital transistor-based circuits. While any arbitrary CMOS-like logic can be implemented, PNM 

logic elements tend to be area-constrained and/or power-constrained, and thus tend to consist of simpler logic than modern 

conventional CPUs. There are three main approaches to integrating PNM circuits with memory arrays. 

The first approach, near-bank acceleration1062,1063, 1064, 1065,1066 integrates logic elements close to each memory bank, with the 

logic sitting adjacent to the peripheral circuitry of a bank within the same die as the memory array. Near-bank acceleration 

avoids the need for data to go through (semi-)global I/O drivers during PNM compute and allows the number of logic elements 

to scale linearly with the number of memory banks. However, the complexity of logic that can be implemented near the bank is 

significantly limited, in order to avoid significant disruption of the peripheral circuit design. 

The second approach, logic layer acceleration1067,1068,1069, takes advantage of the design of modern 3D-stacked memory chips. 

The High-Bandwidth Memory (HBM) specification1070 includes an optional logic layer known as a base logic die, which is 

integrated as the lowest die in the vertical 3D stack. (The Hybrid Memory Cube (HMC)1071, which is not currently in active 

production, also includes a logic layer.) The logic layer can be used to implement global I/O circuits and logic elements, which 

have access to the through-silicon vias (TSVs) that span the chip. Logic elements implemented in the logic layer can (but do not 

need to) be distributed across the chip-level memory partitions (e.g., pseudo channels, vaults) that exist in HBM and HMC 

chips. One challenge of logic layer acceleration is that the logic layer may be fabricated using a DRAM-optimized CMOS 

manufacturing process technology and may be suboptimal for implementing logic transistors. 

The third approach, discrete die acceleration, is similar to logic layer acceleration, but allows for entirely separate dies/chips 

containing the logic elements to be tightly integrated with memory dies/chips. One method for discrete die acceleration makes 

use of 2.5D/3D integration to connect discrete CMOS logic dies to the internal pins/TSVs of a memory 1072,1073. Silicon 

interposers can facilitate 2.5D integration and can potentially allow for relatively large logic dies that make use of a logic-

optimized CMOS manufacturing process technology. However, logic dies attached with silicon interposers must be physically 

placed side-by-side with the memory, which can create power delivery and/or thermal dissipation challenges for large dies. A 

second method for discrete die acceleration uses buffer chips that are mounted on certain memory modules to house the logic 

elements1074. While implementing PNM circuits in buffer chips allows for easy and cost-effective integration with commodity 

memory chips, communication between the buffer chip and the memory chips can often still traverse pin-limited buses that 

consume significant energy and have tight bandwidth constraints. 

To date, there are two commercial PNM-based products that are available, both of which employ near-bank acceleration. 

UPMEM produces PIM-enabled DIMMs (dual inline memory modules), which include PIM chips that contain a DDR4 DRAM 

array integrated with general-purpose in-order CPU cores1075,1076. Samsung produces HBM-PIM, where application-specific 

PNM logic is integrated with HBM arrays1063,1064,1077. Currently available HBM-PIM products support deep neural network 

(DNN) computation, but products with logic elements for other applications are expected to be released in the future. 

4.4. ENABLING DEVICES 

4.4.1. SYNAPTIC DEVICES 

This section lists some specific device technologies that are useful in analog computing.   

4.4.1.1. MEMORY BASED DEVICES 

In general, synaptic devices also need to store a synaptic state and are therefore often based on a memory element.  

Consequently, all but the single flux quantum and photonic based systems are described in the memory section, §2.  The 

memory-based synaptic devices surveyed include: 

• ReRAM 

• Phase Change Memory 

• Ion-Insertion Redox Transistor: 

• Floating Gate 

• Capacitor-on-Gate 
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• Charge-Based Analog Arrays for VMM 

• Single Flux Quantum Neural Network Inference 

• Magnetic Neural Network Devices 

4.4.1.2. SINGLE FLUX QUANTUM NEURAL NETWORK INFERENCE 

Josephson junctions assembled into single flux quantum (SFQ) circuits form a natural neuromorphic system.  In this technology, 

SFQ pulses act as the action potential for a spiking neuron, and superconducting transmission lines act as axons. The synaptic 

or weighting function can be implemented with a flux-biased Josephson junction1078 or with a clustered magnetic Josephson 

junction.1079 These elements represent the basic functionality of an artificial spiking neural network (SNN). 

Superconducting and magnetic device technologies are relatively mature among emerging devices. On the magnetic device side, 

large non-volatile memories based on magnetic tunnel junctions, using spin-polarized currents to write, have been 

commercialized.1080 On the superconducting device side, high speed microprocessors and communication systems have been 

developed, based mostly on superconducting tunnel junctions.1081 

When implementing the synaptic function with a magnetic nanocluster Josephson junction, the superconducting order 

parameter is modulated by the magnetic state of the nanoclusters in the barrier. The magnetic state of embedded nanoclusters 

can be changed by applying small current or field pulses, enabling both unsupervised and supervised learning. Maximum 

operating frequencies of these systems are above 100 GHz, while spiking and training energies have been demonstrated at 

roughly 10−20 J and 10−18 J, respectively.1079  High speed and low-power operation are promising for direct hardware 

implementation of neural networks that could perform inference at higher speeds and potentially lower power than alternatives 

even when including the cooling overhead to operate at 4 K. 

4.4.1.3. PHOTONIC VECTOR-MATRIX MULTIPLY (VMM) 

There are currently two major bottlenecks in the energy efficiency of artificial intelligence accelerators: data movement, and the 

performance of multiply-accumulate (MAC) operations, or matrix multiplications. Light is an established communication 

medium and has traditionally been used to address data movement on a larger scale. As photonic links are scaled smaller and 

some of their practical problems addressed, photonic devices have the potential to address both of these bottlenecks on-chip 

simultaneously. Such photonic systems have been proposed in various configurations to accelerate neural network operations 

(see 1082,1083,1084). However, their main advantage comes from addressing MAC operations directly. Here, we will look at the 

advantages of a simple matrix vector multiplication (MVM) unit made of integrated photonic components, in which inputs and 

outputs are encoded as light signals, and analog matrix multiplications are performed using a passive optical array. 

In one possible instantiation of a photonic MVMs, power or phase can be used to encode information, while wavelength or 

phase selectivity can be used to program the network into a desired configuration. Wavelength division multiplexing (WDM) 

can further increasing the compute density of the approach. Classic examples include arrays of resonator weight 

banks1083, 1085 , 1086  or Mach Zehnder interferometers1084. The most important metrics are energy efficiency (energy/MAC), 

throughput per unit area (MACs/s/mm2), speed (MVM/s), and latency (s), where both speed and latency are measured across an 

entire matrix-vector (MVM) operation. In CMOS, MVM operations are typically instantiated using systolic arrays1087 or SIMD 

units,1088 although there are some other architectures that use aspects of both.1089 Digital systems are limited by the use of many 

transistors to represent simple operations and require machinery to coordinate the data movement involved in both weights and 

activations. The state-of-the-art values typically hover around 0.5–1 pJ/MAC, 0.5–1 TMACs/mm2, 0.5–1 GMVM/s, and 1–2 us, 

respectively. In contrast, photonics MVM units could perform in range 2–10 fJ/MAC, 50 TMACs/mm2, and ~3 ps (1 clock 

cycle) per MVM operation.  This performance depends on solving a number of practical problems which are possible to address 

in the short term. These are discussed below. 

The largest bottleneck in efficient photonic MVM operations is the use of heaters for coarse tuning. Typically, the thermo-optic 

coefficient (dn/dT) is the strongest effect in most materials of interest (i.e., silicon), leading to heavy use of heaters in almost 

any tunable passive photonic system. There are several ways these can be eradicated, via the use of post-fabrication 

trimming 1090 , 1091  or devices with an enhanced electro-optic coefficient (dn/dT, dalpha/dT) such that heaters are not as 

necessary.1092,1093 The second largest problem is fabrication variation, which can result in parameter drifts for devices in an 

array. Resonators, for example, are highly sensitive to such variation, particularly across a wafer. This can also be remedied by 

enhancing the electro-optic coefficient of devices and some other tricks (see 1094,1095 for resonators). Third, the signal-to-noise 

ratio of the output must be optimized by reducing the intrinsic loss of photonic components together with the noise on the 

receiver. There are a variety of technologies that can address this—for example, lasers can be coupled on-chip with < 1 dB of 

loss,1096 photonic devices in state-of-the-art silicon foundries can be designed with low scattering,1097 while detectors such as 

avalanche photodiodes,1098 can reduce the relative contribution of thermal noise to the signal at the receiver. 
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Photonic arrays ultimately have very similar limits to analog electronic crossbar arrays, as analyzed in Ref. 1099: single-digit 

aJ/MAC efficiencies, and 100s of PMACs/s/mm2 compute densities. However, photonic MVMs garner an advantage for larger 

MVM units, both in the size of the matrix and in the physical footprint of the core. Generally speaking, optimized photonic 

systems tend to perform worse than their electrical counterparts for smaller arrays (distances approximately < 100 um), but 

perform better for larger arrays (distances approximately > 100 um)1099. In that sense, photonic MVM arrays have a similar 

profile to photonic communication channels, with better performance over larger distances. However, photonic systems tend to 

have worse signal-to-noise ratios, as a result of several factors: (1) photonic channels are ultimately shot noise limited, which is 

more than an order of magnitude greater than the thermal noise limits on resistors,1099 and (2) to achieve similar compute 

densities to electronics, photonic MVMs must run faster to compensate for their larger device sizes, and noise is speed 

dependent. That being said, there are some architectural tricks to reduce this issue—for example, optical unitary operations1084  

can conserve the variation of the input and output signals, in contrast to other approaches such as resistive crossbar arrays,704 

which by default, see a √𝑁 decrease in effective signal variation from input to output for an 𝑁 × 𝑁 matrix operation. 

Although photonic arrays exhibit some fundamental advantages over analog electronics (particularly for large matrix sizes or 

large physical sizes), a more important question is whether photonics arrays are practical. Thankfully, the transceiver industry 

has created a silicon photonic ecosystem fully compatible with high volume manufacturing (HVM). Compared to CMOS chips, 

photonics has costlier packaging, largely because light generation cannot be done easily in silicon—in fact, the cost of a 

production photonic chip is dominated by packaging. In addition, the tools required for the design and testing of large-scale 

photonic systems (>10k components) are still early in early development—analog photonic systems must grapple with the 

challenge of addressing yield, variability, precision, and tunability. Nonetheless, the total cost to produce a photonic chip 

package at high volume is dipping below one hundred dollars, and it is expected that the trend will continue1100. The orders of 

magnitude advantages offered by photonics, and its potential for HVM scalability, makes it a viable inroad for the breakneck 

performance and innovation required by artificial intelligence algorithms in the years to come. 

4.4.2. OSCILLATOR DEVICES 

The principles that underlie the mechanism of combinatorial optimization in coupled oscillator systems can be considered 

universal, present in many different oscillator technologies. These general physical principles include parametric oscillation, 

injection locking, and sub-harmonic injection locking.846,838 While the same properties have been exhibited in a number of 

highly differentiated technologies, these solutions can differ considerably in their scalability, coupling scheme, energy 

efficiency, susceptibility to process variations or parasitics, and foundry compatibility. 

4.4.2.1. ELECTRICAL OSCILLATORS:  

Electrical oscillators have the advantage that they can be coupled electrically, which is relatively straightforward to do in a 

CMOS process. For ring oscillators, LC oscillators, and other electrical oscillators, positive and negative coupling coefficients 

can be implemented with resistors. 837,838,840,1101 Arbitrary continuous-valued coupling coefficients can be realized using 

precisely programmed resistances. This allows an array of synaptic memory devices (such as ReRAM, flash, PCM) to be 

leveraged to connect together the oscillators, so as long as they are compatible with the oscillators’ operating voltage and 

frequency. Such an array can provide all-to-all connectivity among a large number of oscillators. High programming precision 

in these resistors enables scaling to larger problem sizes while retaining high solution quality.837 

4.4.2.1.1. RING OSCILLATORS:  

Digital ring oscillators, based on CMOS inverter feedback loops, are perhaps the most readily implemented coupled oscillator 

system in today’s foundry process; a large network of ring oscillators was recently demonstrated that solves combinatorial 

optimization problems.1101  

4.4.2.1.2. LC OSCILLATORS:  

Electrical oscillators can also be built from transistor-driven LC oscillator circuits, with CMOS cross-coupled pairs supplying 

the gain needed to sustain the oscillations.837,838,840
 Gain can also be supplied using the negative differential resistance of a 

tunnel diode.1102  The oscillator amplitudes remain fixed during optimization but their phases are induced into bistability 

(separated by 180o) through sub-harmonic injection locking. Alternatively, phase bistability can be induced in an LC oscillator 

by modulating the capacitance with a pump at twice the resonance frequency. 1103 This can be done using the nonlinear 

capacitance-voltage characteristics of a semiconductor varactor. Pumping the varactor introduces phase-sensitive gain, and a 

phase-bistable parametric oscillation grows from noise.837 In each case above, which of the two bistable phases is chosen is 

random for an isolated oscillator, depending on thermal noise and phase jitter. Coupling to other oscillators changes the 

probability distribution, but the process remains stochastic. This allows the system to find a different local minimum of the 

optimization problem when re-initialized. For scalability of on-chip solutions, LC oscillator systems can leverage the fact that at 

high frequencies (>10 GHz), integrated inductors have about the same area as the capacitor, so the oscillator can remain 

compact.1104,1105 
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4.4.2.1.3. SPIN TORQUE OSCILLATORS:  

Among electrical oscillators, one prominent effort is the use of spin torque oscillators (STOs) for providing a computational 

platform for machine learning, spiking neural networks, optimization, and other applications.1106,1107,1108,1109,1110,1111 STOs are 

based on the phenomenon that when a spin-polarized current passes through a ferromagnetic material, precession of the film’s 

magnetization can be induced. This magnetic precession (which has ~1-10 GHz resonance) can be converted to an oscillating 

electrical signal by incorporating the ferromagnetic inside a magnetic tunnel junction, which would has an oscillating tunnel 

resistance when driven by a DC current. STOs can be coupled together resistively and sub-harmonic injection locking can be 

used to solve discrete optimization problems.1112 However, the high current densities of STOs and the limited range of spin 

diffusion currents continue to pose serious challenges in creating coupled networks of such oscillators. 

4.4.2.1.4. INSULATOR-METAL TRANSITION OSCILLATORS:  

Another promising non-silicon technology for very compact oscillators is the IMT (insulator-metal transition) material-based 

oscillator technology.1113,1114,1115,1116,1117,1118  IMT devices, using materials such as VO2, have a resistance that can change 

abruptly with the applied electric field (voltage). Connecting the device to a load circuit can induce self-sustained oscillations 

between the two resistance states, and sub-harmonic injection locking can be used to induce phase-bistable 

oscillations.1119,1120,1121,1122 IMT oscillators can operate at room temperature, and the IMT transition can occur on nanosecond 

time scales. As the oscillation mechanism is completely electrical, the coupling of oscillators can be done easily using electrical 

components. There have been other implementation efforts for electrical oscillators1123,1124,1125,1126,1127 but the focus has been to 

build high frequency and low power individual oscillators, as opposed to the demonstration of coupled systems of oscillators, or 

the generation of interesting dynamics for computing. 

4.4.2.2. OPTICAL OSCILLATORS:  

Optical oscillators have been studied1128,1129 and used for computing,842 but challenges include bulky components, difficult 

interfacing between the electrical and optical domains, and lack of programmability to enable an optical computing apparatus. 

Optical parametric oscillators are particularly useful for discrete optimization applications. Like their electrical counterpart, rely 

on a second-harmonic pump to induce a phase-bistable coherent oscillation from noise. This has been shown to solve the Ising 

problem with success,842,843,844 but coupling the oscillators together is more practically difficult in the optical domain. The 

Coherent Ising Machine implemented these oscillators as pulses traveling along a long optical fiber, but the coupling had to be 

accomplished using electronic circuits that read out optical signals, digitally applied coupling weights, and re-injected pulses 

into the fiber at precise times to achieve coupling.843 

4.4.2.3. ELECTROMECHANICAL OSCILLATORS:  

Parametric oscillation has also been demonstrated in electromechanical systems.1130 For binary optimization, two spins can be 

encoded in the symmetric and anti-symmetric vibrational modes of a single mechanical resonator, which are independent. 

Modulating the spring constant of the resonator material at the appropriate frequency can implement specific coupling schemes 

between two spins. The modulation can be achieved using a voltage signal by exploiting the piezoelectric effect.845 
 

4.4.3. STOCHASTIC DEVICE TECHNOLOGIES FOR RANDOM BIT GENERATION 

New devices based on memristors, avalanche breakdown, and magnetic tunnel junctions and other technologies have been 

proposed for generating random bits.  A key enabling functionality for some architectures like probabilistic (p)-logic is the 

ability to tunably control the probability of a zero or one based on an input current or voltage.  Several proposed devices are 

listed below.   

4.4.3.1. MAGNETIC TUNNEL JUNCTIONS (MTJ) 

Existing Embedded MRAM technology can be used to create a tunable random bit, provided that the Magnetic Tunnel 

Junctions are engineered to be thermally unstable. Such thermally unstable magnets have been experimentally observed. As 

MTJ dimensions are scaled, keeping them thermally stable becomes a hard challenge for memories, therefore destabilizing 

them in a controllable manner should be feasible in current technology.  

Low-barrier MTJs can convert ambient thermal noise on nanomagnets into a fluctuating resistance, which is then used to build 

a device with tunable randomness when integrated with minimal CMOS periphery. The fluctuating resistance change due to 

thermal magnetic noise in MTJs can be measured by Tunneling Magneto resistance (TMR). State-of-the-art TMR values range 

from upwards of 100% to 600% demonstrated by the Tohoku Group,1131 and commercial STT-MRAM devices exhibit >100% 

TMR. A large TMR would enable a robust functional unit for controllable randomness. The theoretical limit for TMR in MgO-

based MTJs has been reported1132 to be 1,000% and can presumably be larger. There is currently intense research activity in 

half-metallic ferromagnets to increase TMR. 
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Two key experimental breakthroughs on MTJs, one from IBM researchers1133 and one from Tohoku University1134, have been 

the demonstration of nanosecond (GHz) fluctuations of low-barrier ferromagnets which could find use in probabilistic circuits 

implemented with MRAM technology  

4.4.3.2. SINGLE-ELECTRON BIPOLAR AVALANCHE TRANSISTOR (SEBAT) 

The single-electron bipolar avalanche transistor (SEBAT) is a novel Geiger-mode avalanche bipolar transistor structure.1135,1136  

The device generates Poisson-distributed digital output pulses at rates between 1kHz and 20MHz.  The pulse rate is linearly 

proportional to the emitted current. A MOS transistor is also formed within the base region of the device, allowing for voltage 

control of the pulse rate.  The device is fully compatible with low-voltage CMOS circuits and standard digital process steps. 

4.4.3.3. MEMRISTORS/RESISTIVE RAM 

The intrinsic variability of memristive switching, particularly the switching delay time of memristors, can be a good source of 

stochasticity.1137,1138,1139  Such stochasticity originates from the ionic dynamics within the memristors.1140 

4.4.3.4. CONTACT-RESISTIVE RANDOM ACCESS MEMORY (CRRAM) 

CRRAM can be used for random number generation.1137, 1141 A CRRAM device may be based on a layer of silicon dioxide that 

is sandwiched between two electrodes; the bottom electrode could simply be the drain of a CMOS transistor. 1142 During 

operation, the current flowing in a filament channel will be (randomly) impacted by any electrons trapped in the insulating layer. 

If a high voltage is applied to a device, the current in the filament channel will be large and not impacted by trapped electrons. 

However, with the application of a lower voltage, the width of a filament will shrink, and the trapped electrons will (randomly) 

influence output current. 

4.4.3.5. CMOS 

There are different ways to obtain random number generators (RNG) in CMOS using different physical noise sources, one 

being “jitter” in ring oscillators.1143  These TRNGs can be tuned into tunable random number generators as required but require 

significant amounts of area when compared to single device alternatives.  

4.4.3.6. STOCHASTIC JOSEPHSON JUNCTION 

Single flux quantum (SFQ) logic relies on voltage pulses generated by 2π phase slips of the superconducting order parameter 

across a Josephson junction.  These voltage pulses have a time-integrated amplitude given by the flux quantum Φ0 = 2×10−15 

Wb. A standard circuit model of a Josephson junction is the parallel connection of a supercurrent up to Ic the critical current, a 

normal state resistor, a capacitor, and a channel for the thermal noise term. The resulting dynamics are the same as a forced 

damped pendulum. The energy barrier is given by (IcΦ0)/(2π). For stochastic operation one can operate with junctions that meet 

the condition δ = (2π kBT)/(IcΦ0) ~ 10, where δ is the stochasticity, kB is the Boltzmann constant and T is the temperature in 

kelvin.  The exact value of the stochasticity is an important circuit parameter as it determines the frequency of spiking events.  

In this regime, the energy in a single flux quantum spike is sub-attojoule while the frequency can be greater than 100 GHz.1144   

Because Josephson junctions can be operated near the thermal stability limit, the amount of stochasticity can be varied by 

changing the temperature a few degrees. For values of the stochasticity less than 10, the dynamics are basically deterministic, 

whereas when the stochasticity is larger there is a significant stochastic component. The value of the stochasticity can be 

effectively tuned between the deterministic state and the stochastic state by changing the temperature of the circuit by a few 

degrees.1145  Circuits based on these devices have many promising potential applications.  For example, stochastic Josephson 

junctions have been shown to make effective pseudo-sigmoid generators,1146 and stochastic Josephson junction spiking can 

perform the neural accumulate operation at speeds up to 70 GHz.1147 

4.5. DEVICE-ARCHITECTURE INTERACTION: CONCLUSIONS/RECOMMENDATIONS 

In this section, we have surveyed a variety of concepts and R&D directions for the development of novel Beyond CMOS 

computing technologies that represent an effort to think “outside the box,” in the sense of looking beyond just developing 

simple drop-in replacements for traditional logic and memory cells. More broadly, new hardware designs spanning multiple 

levels of the technology stack from the devices up through circuits and architectures must be considered, and the interactions 

between the various levels explored. More specifically, we expand the scope of future computing technologies beyond 

traditional irreversible, deterministic digital logic to include a broad range of alternative, unconventional computational 

paradigms, such as analog, probabilistic, and (classical) reversible computing paradigms. 

Recommendations. In general, computing paradigms outside of the traditional irreversible, deterministic, digital paradigm are 

still very under-developed, compared to the conventional paradigm. This is not surprising, considering that the conventional 

paradigm historically facilitated the development of a design abstraction hierarchy that permitted enormously complex systems 

to be constructed. As a result, the complexity and efficiency of those systems increased exponentially as Moore’s Law made the 
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underlying devices cheaper and more efficient. However, Dennard scaling has now ended, the end of the CMOS roadmap 

appears to be in sight, with no clear successor having been identified, and fundamental thermodynamic limits are also coming 

into view. Thus, today there is an increasing level of interest in expanding the scope of our investigations to include 

unconventional computing paradigms that may transcend the limits of the traditional computing paradigm.  

Overall, the potential utility of new styles of “Beyond CMOS” computing that rethink computation—not just at the device level, 

but also in terms of the entire computing paradigm, with changes to the machine design also at the circuit level, the architecture 

level, and higher levels—is vast. It is our recommendation that these alternative computing approaches deserve a greatly 

increasing amount of attention and investment as the apparent end of the CMOS roadmap draws closer. 

 

5. BEYOND CMOS DEVICES FOR MORE-THAN-MOORE APPLICATIONS 

5.1. EMERGING DEVICES FOR SECURITY APPLICATIONS 

5.1.1. INTRODUCTION 

Like performance, power, and reliability, hardware security is becoming a critical design consideration. Hardware security 

threats in the IC supply chain, include 1) counterfeiting of semiconductor components, 2) side-channel attacks, 

3) invasive/semi-invasive reverse engineering, and 4) IP piracy. A rapid growth in the “Internet of Things” (IoT) only 

exacerbates problems. While hardware security enhancements and circuit protection methods can mitigate security threats in 

protected components, they often incur a high cost with respect to performance, power and/or cost.  

Advances in emerging, post-CMOS technologies may provide hardware security researchers with new opportunities to change 

the passive role that CMOS technology currently plays in security applications. While many emerging technologies aim to 

sustain Moore's Law-based performance scaling and/or to improve energy efficiency,1148,1149,1150 emerging technologies also 

demonstrate unique features that could drastically simplify circuit structures for protection against hardware security threats. 

Security applications could not only benefit from the non-traditional I-V characteristics of some emerging devices, but also help 

shape research at the device level by raising security measures to the level of other design metrics.  

At present, many emerging technologies being studied in the context of hardware security applications are related to designing 

physically unclonable functions (PUFs). Many post-CMOS devices1151,1152,1153 have been suggested as a pathway to a PUF 

design. (More detailed reviews are also available.1154)  With a PUF, challenge/response pairs are mapped (typically in a trusted 

environment). Responses are derived from natural/random variations and disorders in an integrated circuit that cannot be copied 

(or cloned) by an adversary. PUFs have been employed for tasks such as device authentication,1154 to securely extract 

software,1155 in trusted Field Programmable Gate Arrays (FPGAs),1156 and for encrypted storage.1155 Post-CMOS devices also 

find utility as random number generators (RNGs) that may be employed for secure communication channels (e.g., to generate 

session keys1154). That said, while intriguing, PUFs and RNGs may only cover a small part of the hardware security landscape. 

(Furthermore, one must be careful that PUF designs based on emerging technologies do not depend on device characteristics 

that a designer would like to eliminate when considering utility for logic or memory.)   

Given the many emerging devices being studied1148 and that few if any devices were proposed with hardware security as a 

“killer application,” this document also reports initial efforts as to how the unique I-V characteristics of emerging transistors 

that are not found in traditional MOSFETs could benefit hardware security applications. 

Below, we review the efforts described above, beginning with efforts to design PUFs and RNGs with emerging technologies. 

How device characteristics can enable novel circuits to achieve hardware security-centric ends such as IP protection, logic 

locking, and the prevention of side channel attacks are also discussed. 

5.1.2. PHYSICALLY UNCLONABLE FUNCTIONS (PUFS) AND EMERGING TECHNOLOGIES 

A variety of different emerging logic and memory technologies have been considered in the context of PUFs. As has been 

reviewed,1154 variations in the required write time in spin torque transfer random access memory (STT-RAM) was proposed to 

create a domain wall memory PUF.1151 Other structures based on magnetic tunnel junctions have also been proposed.1157,1158 

Variations in write times have also been exploited to produce unique responses in phase change memory (PCM) arrays.1159 The 

variability of ReRAM presents a natural opportunity for PUF implementation, and array demonstration has been reported.1160, 

1161 At the array-level, variations in diode resistivity have also been used to derive challenge/response pairs from crossbar 

structures.1162 PUFs based on graphene1163  and carbon nanotubes have also been proposed/considered.1164 

As a more representative case study, prior work1154 considers an array structure based on process variation in memristors1165,1166 

to create a PUF structure (referred to as NanoPUF1154). NanoPUF is based on 1) a crossbar with memristors. 2) A challenge is 
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applied to the memristor array by using a row decoder to apply a voltage amplitude (Vdd) to a given row that can vary in 

duration; a column decoder connects a given column to a resistance Rload. All other rows and columns remain floating. 3) A 

response circuit (to collect outputs to different challenges) would consists of Rload and a current comparator that compares Iout 

from a given column to a reference current Iref. A logic 1 might be recorded if Iout > Iref, while a logic 0 might be recorded if Iout 

< Iref. With respect to PUF functionality, when a write pulse is applied, natural process variations will cause some memristors to 

turn on (leading to a logic 1), and others to remain off (leading to a logic 0). While the time of the right pulse serves as one 

variable,1165 the pulse’s duration and amplitude may also be varied.1166  

5.1.3. RANDOM NUMBER GENERATORS (RNGS) AND EMERGING TECHNOLOGIES 

The inherent randomness in emerging devices can also be used to generate random numbers.1154 As a representative case study, 

prior work1154 explores an approach based on contact-resistive random access memory (CRRAM).1167 (Note that a CRRAM 

device may be based on a layer of silicon dioxide that is sandwiched between two electrodes; the bottom electrode could simply 

be the drain of a CMOS transistor—which in turn suggests that RNGs based on emerging technologies can be CMOS 

compatible.1168) 

During operation, the current flowing in a filament channel will be (randomly) impacted by any electrons trapped in the 

insulating layer. If a high voltage is applied to a device, the current in the filament channel will be large and not impacted by 

trapped electrons. However, with the application of a lower voltage, the width of a filament will shrink, and the trapped 

electrons will (randomly) influence output current.1168 Indeed, RNGs based on emerging devices1168 can successfully pass 

randomness tests such as those provided by the National Institute of Standards and Technology (NIST).  

As random number are derived from current passing through filaments, memristors, PCM, and RRAM devices can also be 

leveraged to build similar RNGs.1154   

5.1.4. OTHER HARDWARE SECURITY PRIMITIVES BASED ON EMERGING TECHNOLOGIES 

Below, other security-centric primitives (non-PUFs and non-RNGs) based on emerging technologies are also discussed. How 

new devices might be employed for IP protection and to prevent side channel attacks are considered. In each section, device 

characteristics of interest are discussed first. Subsequent discussions then consider how device characteristics can be employed 

to achieve a security centric end. 

5.1.4.1. EMERGING TECHNOLOGIES FOR IP PROTECTION 

Tunable Polarity—In many nanoscale FETs (45 nm and below), the superposition of n-type and p-type carriers is observable 

under normal bias conditions. The ambipolarity phenomenon exists in various materials such as silicon, 1169  carbon 

nanotubes1170 and graphene.1171 By controlling ambipolarity, device polarity can be adjusted/tuned post-deployment. Transistors 

with a configurable polarity—e.g., carbon nanotubes,1172 graphene,1173 silicon nanowires (SiNWs),1174 and transition metal 

dichalcogenides (TMDs)1175 —have already been experimentally demonstrated.  

As more detailed examples, SiNW FETs have an ultra-thin body structure and lightly-doped channel, which provides the ability 

to change the carrier type in the channel by means of a gate. FET operation is enabled by the regulation of Schottky barriers at 

the source/drain junctions. The control gate (CG) acts conventionally by turning the device on and off via a gate voltage. The 

polarity gate (PG) acts on the side regions of the device, in proximity to the source/drain (S/D) Schottky junctions, switching 

the device polarity dynamically between n- and p-type. The input and output voltage levels are compatible, enabling directly 

cascadable logic gates.1176 

Ambipolarity is an inherent property of TFETs due to the use of different doping types for drain and source if an n/i/p doping 

profile is employed.1177 By properly biasing the n-doped and p-doped regions as well as the gate, a TFET can function either as 

an n- or p-type device, and no polarity gate is needed. As the magnitude of ambipolar current can be tuned (i.e., reduced) via 

doping or by increasing the drain extension length,1177 one can envision fabricating devices that could be better suited for logic 

as well as security-related applications. Given that the screening length in TMD devices scales with their body thickness, one 

can achieve substantial tunneling currents.   

Polymorphic logic gates—The ability to dynamically change the polarity of a transistor opens the door to define the 

functionality of a layout or a netlist post fabrication. Though one may use field programmable gate arrays (FPGAs) to achieve 

the same goal, FPGAs cannot compete with ASICs in terms of performance and power, and an FPGA's reliance on 

configuration bits being stored in memory introduces another vulnerability. Security primitives to be discussed can serve as 

building blocks for IP protection, IP piracy prevention, and to counter hardware Trojan attacks.  

Polymorphic logic circuits provide an effective way for logic encryption such that attackers cannot easily identify circuit 

functionality even though the entire netlist/layout is available. However, polymorphic logic gates have never been widely used 

in CMOS circuits mainly due to the difficulties in designing such circuits using CMOS technology.  
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SiNW FET based polymorphic gates to prevent IP piracy have been introduced.1178,1179 If the control gate (CG) of a SiNW FET 

is connected to a normal input while the polarity gate (PG) is treated as the polymorphic control input, we can easily change the 

circuit functionality through different configurations on the polymorphic control inputs without a performance penalty. For 

example, a SiNW FET-based NAND gate can be converted to a NOR gate, whereas a CMOS-based NAND cannot be 

converted to a fully functioning NOR by switching power and ground.  

TFET-based polymorphic logic circuits have also recently been developed.1180 By properly biasing the gate, the n-doped region, 

and the p-doped region, a TFET device can function either as an n-type transistor or p-type transistor. If the n-doped region of 

the two parallel TFETs is connected to VDD, and the p-doped region of the bottom TFET is connected to GND, the circuit 

behaves like a NAND gate. If the n-doped region of the two parallel TFETs is connected to GND and the p-doped region of the 

bottom TFET is connected to Vdd, the circuit behaves as a NOR gate. By using two MUXes (one at the top and the other at the 

bottom) to select between the two types of connections, the circuit then functions as a polymorphic gate where the control to the 

MUXes forms a 1-bit key.1180 

One can readily design polymorphic functional modules using the low-cost polymorphic logic gates built from either SiNW 

FETs or TFETs that only perform a desired computation if properly configured. If some key components (e.g., the datapath) in 

an ASIC are designed in this manner, the chip is thus encrypted such that a key, i.e., the correct circuit configuration, is 

required to unlock the circuit functionality. Without the key, invalid users or attackers cannot use the circuit. Thus, IP cloning 

and IP piracy can be prevented with extremely low performance overhead. A 32-bit polymorphic adder using SiNW FETs has 

been designed and simulated. Two pairs of configuration bits (with up to 32-bits in length) are introduced and the adder can 

only perform addition functionality if the correct configuration bits are provided.  

Camouflaging Layout—Split manufacturing and IC camouflaging are used to secure the CMOS fabrication process, albeit with 

high overhead and decreased circuit reliability. With CMOS camouflaging layouts, both power and area would increase 

significantly in order to achieve high levels of protection.1181 A CMOS camouflaging layout that can function either as an XOR, 

NAND or NOR gate requires at least 12 transistors. Emerging technologies help reduce the area overhead. Recent work has 

demonstrated that only four SiNW FETs with tunable polarity are required to build a camouflaging layout that can perform 

NAND, NOR, XOR or XNOR functionality.1182,1183 Again, the SiNW FET based camouflaging layout has more functionality 

and requires less area than CMOS counterparts and could offer higher levels of protection to circuit designs. 

Security Analysis—Logic obfuscation is subject to brute-force attacks. If there are N polymorphic gates incorporated in the 

design, it would take 2N trials for an attacker to determine the exact functionality of the circuit. As the value of N increases, the 

probability of successfully mounting a brute-force attack becomes extremely low. In a preliminary implementation of 32-bit 

adder, the incorporated key size is 32 bit.1180 The probability that an attacker can retrieve the correct key becomes 1/232 

(2.33×10-10). Obviously, polymorphic based logic obfuscation techniques are resistant to a conventional brute-force attack. 

With respect to camouflaging layouts, given that our proposed SiNW based camouflaging layout can perform four different 

functions, the probability that an attacker can retrieve the correct layout is 25%. Therefore, if N SiNW FET camouflaging 

layouts are incorporated in a design, the attacker has to compute up to 4N times to resolve the correct layout design. Compared 

to polymorphic gate-based logic obfuscation, camouflaging layout embraces higher security level but with larger area overhead.  

5.1.4.2. EMERGING TECHNOLOGIES TO PREVENT SIDE-CHANNEL ATTACKS 

Many post-CMOS transistors aim to achieve steeper subthreshold swing, which in turn enables lower operating voltage and 

power. Many devices in this space also exhibit I-V characteristics that that are not representative of a conventional MOSFET. 

An example of how to exploit said characteristics for designing hardware security primitives is discussed. 

Steep slope transistors—TFETs have been exploited to design current mode logic (CML) style light-weight ciphers.1184,1185 The 

high energy carriers in TFETs can be filtered by the gate-voltage-controlled tunneling such that a sub-60 mV/decade 

subthreshold swing is achievable at room temperature.1186 With improved steep slope and high on-current at a low supply 

voltage, TFETs could enable supply voltage scaling to address challenges such as undesirable leakage currents, threshold 

voltage reduction, etc. Different types of TFETs have been developed and fabricated.1186,1187 

Bell-Shaped I-Vs—Emerging transistor technologies may also exhibit bell-shaped I-V curves. Symmetric graphene FETs 

(SymFETs) and ThinTFETs are representatives of this group. In a SymFET, tunneling occurs between two, 2-D materials 

separated by a thin insulator. The IDS-VGS relationship exhibits a strong, negative differential resistance (NDR) region. The I-V 

characteristics of the device are “bell-shaped,” and the device can remain off even at higher values of VDS. The magnitude of 

the current peak and the position of the peak are tunable via the top gate (VTG) and back gate (VBG) voltages of the device.1178 

Such behavior has been observed experimentally.1188,1189 More specifically, VTG and VBG change the carrier type/density of the 

drain and source graphene layers by the electrostatic field, which can modulate IDS. ITFETs or ThinTFETs may exhibit similar 

I-V characteristics.1190 
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Preventing fault injection—Side-channel analysis, such as fault injection, power, and timing, allows attackers to learn about 

internal circuit signals without destroying the fabricated chips. Countermeasures have been proposed to balance the delay and 

power consumption when performing encryption/decryption at either the algorithm or circuit levels.1191 These methods often 

cause higher power consumption and longer computation time in order to balance the side-channel signals under different 

conditions. Thus, an important goal is to prevent fault injection and to counter side-channel analysis by introducing low-cost, 

on-chip voltage/current monitors and protectors. Graphene SymFETs, which have a voltage-controlled unique peak current can 

be used to build low-cost, high-sensitivity circuit protectors through supply voltage monitoring. 

Recent work has developed a SymFET-based power supply protector.1178,1179 With only two SymFETs, the power supply 

protector can easily monitor the supply voltage to ensure that the supply voltage to the circuit-under-protection is within a 

predefined range. In the event of a fault injection, the decreased supply voltage will power down the circuit rather than injecting 

a single-bit fault,1179 and can thus protect the circuit from fault injection attacks. If one uses Vout as the power supply to a circuit 

under protection (e.g., an adder), due to the bell-shaped I-V characteristic of the SymFET, an intentional lowering of VDD cuts 

off the power supply. Thus, the sum and carry-out of the full adder output is ‘0’, and no delay related faults are induced. A 

similar CMOS power supply protector would require op-amps for voltage comparison. As a result of the voltage/current 

monitors developed thus far, voltage/current-based fault injections can be largely prevented. By inserting the protectors in the 

critical components of a given circuit design, the power supply to these components can be monitored and protected.1180 

(SymFET-based Boolean logic is also possible.1192)  

Preventing differential power analysis (DPA)—As an advanced side-channel attack scheme, DPA employs analysis of statistic 

power consumption measurements from a crypto system to obtain secret keys. Since the introduction of DPA1194, there has been 

many efforts to develop low-cost and efficient countermeasures. Countermeasures are generally classified into two categories: 

1) algorithm-level solutions and 2) hardware-level solutions.  

Algorithm-level solutions—aim to design cryptographic algorithms that can withstand a certain amount of information 

leakage,1193 e.g., frequently changing the keys to prevent the attacker from collecting enough power traces1194 or using masking 

bits during the internal stages to limit information leakage.1195  

A more practical circuit-level method for preventing DPA attack leverages a sense amplifier-based logic (SABL) or current 

mode logic (CML) for cryptographic algorithm implementations.1196 A CML gate includes a tail current source, a current 

steering core and a differential load. A CML gate will switch the constant current through the differential network of input 

transistors, utilizing the reduced voltage swing on the two load devices as the output. Although CML is not widely used in 

mainstream circuit design, its unique features, namely low latency and stable power consumption, can be leveraged to serve as 

a countermeasure against a DPA attack.  

The strength of the CML-based approach is the constant power consumption of differential logic which can counter power-

based attacks as operation power is independent of processed data. The drawback with these (mostly CMOS-based) logic 

designs, is their large area and power consumption when compared to static single ended logic. When considering hardware for 

the IoT (where the systems can be severely power constrained), system designers are presented with a dilemma in which they 

need to choose either high security or low power consumption. Emerging transistor technologies could help mitigate risks of 

DPA attacks while maintaining low power consumption.  

Recent work has implemented a standard cell library of TFET CML gates and conducted a detailed study of their performance, 

power and area with respect to CMOS equivalents.1197 Standard cells were used to implement and evaluate TFET-based CML 

on a 32-bit KATAN cipher (a light-weight block cipher). All KATAN ciphers share the same key schedule with the key size of 

80 bits as well as the 254-round iteration with the same non-linear function units.1198 

The two CML implementations consume less gate equivalents and area compared to the two static counterparts given that the 

majority of KATAN32 is made up by the D flip flops. The area of TFET CML KATAN32 is 1.441 μm2, which is about 60% 

less than the Static TFET KATAN32. The power consumption of TFET CML (9.76 μW) is slightly lower than static CMOS 

(9.96 μW). It also outperforms CMOS CML.  

Moreover, the correlation coefficient of a TFET static KATAN32 reaches its highest when the correct keys are applied. By 

comparison, the correlation coefficient of TFET CML KATAN32 is much more scattered, and all four hypothetical keys are 

equally distributed. Thus, the TFET CML KATAN32 implementation can successfully counteract CPA. Because the power 

consumption is mainly determined by AND/XOR logic gates of two nonlinear functions—and the effect of CPA is 

maximized—the correlation coefficients for KATAN32 are higher on average than other block ciphers, e.g., CPA on S-box1199. 
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6. EMERGING MATERIALS INTEGRATION 

6.1. INTRODUCTION AND SCOPE 

6.1.1. CURRENT STATE OF TECHNOLOGY 

The semiconductor industry was historically driven by a strong correlation between technology scaling and performance of 

most integrated circuits. The PC market required more complex and faster microprocessors that largely drove the development 

and scaling of transistors and memory. These devices required new materials and processes such as strained silicon, high-k gate 

dielectrics and metal gate electrodes that are now widely, and will continue, to be used in IC manufacturing.  In the past decade, 

a completely new ecosystem has emerged. New system integrators, from mobile to data centers to the Internet of Everything, 

have appeared with new and complex technology requirements. These system integrators will have impact that includes 

microprocessors, but extends towards new applications including medicine, energy and the environment. 

6.1.2. DRIVERS AND TECHNOLOGY TARGETS 

As transistors and memory begin to run out of horizontal space and ICs continue to be limited by power, device technologies 

will enter a phase characterized by vertical integration and performance specifications driven towards reduction of power. New 

transistor, memory, interconnect, lithography materials and processes will be required to enable this new More Moore scaling 

paradigm. As conventional information processing and storage technology reaches its ultimate limits, entirely new non-CMOS 

logic and memory devices and even new, non-Von Neumann circuit architectures are potential Beyond CMOS solutions. Such 

solutions ideally can be integrated onto the Si-based platform to take advantage of the established processing infrastructure, as 

well as being able to include Si devices such as memories onto the same chip.  However, while these technologies will likely be 

integrated on a Si-based platform, the vast majority of these Beyond CMOS technologies are based on entirely new materials 

and physics. Finally, new system integrators require materials that enable potentially trans-disciplinary advances in 

monolithically integrated complex functionality, i.e., functional scaling. Significant challenges must be overcome for these 

emerging materials to provide viable solutions for future integrated circuit technologies. To deliver these capabilities, enhanced 

Metrology will be needed to accelerate material evaluation, improvement and capabilities. The ultimate goal is to provide 

timely guidance on emerging material and process performance, cost, reliability, and sustainability options that will drive 

breakthrough advances in future manufacturing technology. 

6.1.3. SCOPE 

 

Figure EMI1 Emerging Material Integration Promotes the Advancement of Existing Technologies 

The IRDS represents a strategic repositioning of the community’s scope, needs, and set of emergent opportunities. In alignment 

with this new perspective, this edition of the emerging materials integration (EMI) sub-chapter represents a work in transition 

with a primary goal of aligning with the needs of related IRDS working groups. Much of the associated information in the 

detailed requirements and solutions tables comes from prior ERM chapters and input from current IRDS working groups, and 

will be updated in future editions. The chapter emphasizes strategic difficult challenges and/or enabling of novel, breakthrough 

and potentially disruptive opportunities for emerging material properties, synthetic methods, and metrology, organized in the 

following areas: 

1. Scaled technology materials needs for More Moore: transistors, memory, interconnects, lithography, heterogeneous 

integration, assembly and packaging. 

2. Novel materials for Beyond CMOS: emerging logic and information processing devices, emerging memory and storage 

devices, and novel computational paradigms and architectures. 

3. Potentially disruptive material opportunities for functional scaling and convergent applications: Heterogenous 

components, outside system connectivity, and high impact application areas such as energy, environment, agriculture, 

health, medical, etc. 
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For all areas, the advancement requires an intergration of emerging materials as illustrated in Figure BC-EMI 1. 

6.2. CHALLENGES 

6.2.1. NEAR-TERM CHALLENGES 

Table EMI1 Near-term Difficult Challenges 

Near-Term Challenges: 2022–2028 Description 

Materials and processes that achieve performance 
and power scaling of lateral fin- and nanowire FETs 

(Si, SiGe, Ge, III-V). 

Integrated high k dielectrics with EOT <0.5nm and low leakage. Integrated contact structures that 
have ultralow contact resistivity. Achieving high hole mobility in III-V materials in FET structures. 

Achieving high electron mobility in Ge with low contact resistivity in FET structures. Processes for 
achieving low dislocations and anti-phase boundary generating interface between Ge/III-V channel 

materials and Si. Dopant placement and activation i.e., deterministic doping with desired number at 

precise location for Vth control and S/D formation in Si as well as alternate materials. 

Materials and processes that improve copper 

interconnect resistance and reliability 

Mitigate impact of size effects in interconnect structures. Patterning, cleaning, and filling at nano 
dimensions. Cu wiring barrier materials must prevent Cu diffusion into the adjacent dielectric but also 

must form a suitable, high quality interface with Cu to limit vacancy diffusion and achieve acceptable 

electromigration lifetimes. Reduction of the k value of inter-metal dielectrics. 

Materials and processes for continued scaling of 

DRAM/SRAM and embedded NVM 

Low temperature materials for high performance vertical transistor memory select structures. High-k, 

low leakage DRAM dielectrics. Processes for stacking of 3D flash. 

Materials and processes that improve AI and 

Quantum computing 

Integrate ultra-low power consumption AI devices for advanced edge computing. Development of 

process technology for introducing various new-principle computing materials, including liquids and 
biomaterials, into existing electronics. Elucidation of device physics at low temperatures to realize 

low-temperature electronics.  

Materials and processes that extend lithography to 

sub-10 nm dimensions with reproducible properties 

Novel resists to extend 193 nm lithography and support EUV lithography. Directed self-assembly 

(DSA) with materials such as block-copolymers to potentially extend lithography though pattern 

rectification and pattern density multiplication. 

Materials for heterogeneous integration of multi-chip, 

multi-function packages. 

Materials to modify polymer properties to enable increased product reliability. Novel electrical 

attaching materials to allow lower assembly temperatures and improved product reliability. 
Simultaneously achieve package polymer CTE, modulus, electrical and thermal properties, with 

moisture and ion diffusion barriers. Nanosolders compatible with <200C assembly, multiple reflows, 

high strength, and high electromigration resistance. Nanoinks that can be printed as die attach 

adhesives with required electrical, mechanical, thermal, and reliability properties. 

6.2.2. LONG-TERM CHALLENGES 

Table EMI2 Long-term Difficult Challenges 

Long-term Challenges: 2029–2037 Description 

Materials and processes that achieve 3D monolithic 

and vertical integration of high mobility and steep 

subthreshold transistors 

Processes for sequential 3D vertical integration of transistors. Methods to lower the synthesis 

temperature of vertical semiconductor nanowires. Methods to dope and contact vertical 
semiconductor nanowire transistors. Lithography-free and low-temperature methods to 

achieve gate stack on vertical transistors. 

Materials and processes that replace copper 
interconnects with improved reliability and 

electromagnetic performance at the nanoscale 

Synthesis or assembly of CNTs in predefined locations and directions with controlled 
diameters, chirality and site-density. Carbon and collective excitations. Novel interlayer 

dielectrics: Metal Organic Framework (MOF) and Carbon Organic Framework (COF). Metals 

with less size effects such as silicides. 

Materials and processes for charge-based and non-
charge-based beyond CMOS logic that replaces or 

extends CMOS 

Achieving a bandgap and full interfaces control in graphene in FET structures and alternative 
FETs (TFETs etc). Synthesis of CNTs with tight distribution of bandgap and mobility. 

Complex metal oxides with low defect density. High mobility transition metal dichalcogenides 

with low defect density and low resistance ohmic contacts. Spin materials: characterization of 
spin, magnetic and electrical properties and correlation to nanostructure. Topological 

materials: large bandgaps much greater that kT at room temperature, ability to modulate 

bandgap efficiently with electric field. BiSFET heterostructures: achieving exciton 

condensation at room temperature.  

Materials and processes for emerging memory and 

select devices to replace DRAM/NVM. 

Multiferroic with Curie temperature >400K and high remnant magnetization to >400K. 

Ferromagnetic semiconductor with Curie temperature >400K. Complex Oxides: Control of 
oxygen vacancy formation at metal interfaces and interactions of electrodes with oxygen and 

vacancies. Switching mechanism of atomic switch: Improvements in switching speed, cyclic 
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Long-term Challenges: 2029–2037 Description 

endurance, uniformity of the switching bias voltage and resistances both for the on-state and 

the off-state.  

Materials and processes that enable monolithically 

3D integrated complex functionality including 

thermal and yield challenges 

Integration on CMOS Platforms. Integration with flexible electronics. Biocompatible 

functional materials. Leveraging convergent materials expertise in adjacent sectors, including 

More than Moore functionalities (photonics, optics/metamaterials, outside connectivity, 

energy transfer/storage, power circuits). 

Green and sustainable fabrication To realize an integration process that is environmentally friendly and economically viable. 

Utilizing AI, ML, and informatics to develop production processes that can introduce green 

new materials. 

 

6.3. TECHNOLOGY REQUIREMENTS AND POTENTIAL SOLUTIONS 

6.3.1. SUMMARY 

The IRDS seeks a framework for managing the convergence of scaled information processing and storage, i.e., More Moore 

(MM) and Beyond CMOS (BC), with the next emerging era of monolithically integrated systems that achieve enhanced overall 

functional density. The trend towards the convergence of monolithically integrated functional diversification with 

miniaturization manifests as increasing complexity in the road-mapping process. The IRDS reflects this growing complexity, 

with an increasing number of projected roadmap parameters and requirements associated with new functionalities. While EMI 

continues to support the evolutionary, and semiconductor centric needs of the traditional semiconductor community, emerging 

architectures could benefit from new device functionality, which may require new materials and new physical mechanisms. 

New waves of emerging materials technologies may represent potentially disruptive opportunities. 

Candidate EMI materials and processes exhibit unique and useful properties that may require atomic level structural, interface, 

defect and compositional control. In some cases, current synthetic or manufacturing technologies are not yet capable of 

producing such materials with the required level of control. The difficulties could be due to: 1) The inability of a research 

environment to produce materials with the required level of control that would express the desired properties; or 2) scaling up 

the synthetic and fabrication processes to satisfy commercial manufacturing requirements. In some cases, current materials 

growth processes effect unacceptable levels of defect formation, which drive the need for new and more robust fabrication 

methods. In other cases, synthetic methods exist for producing high quality materials, but these processes cannot be scaled to 

the higher growth rates, yields, or purity needed for insertion into viable commercial applications. While these materials may 

provide proof of concept and suggest a potential solution, new cost-effective fabrication technologies may be required to 

warrant a candidate material’s insertion into high volume manufacturing. It will be an extremely important issue to be able to 

quickly verify the integration process suitability of emerging materials in large-scale semiconductor factories. For this reason, it 

is important to establish standardized indices for evaluating the characteristics of new materials and new devices. We should 

also consider using the international standards being conducted at TC113 (Technical committee No.113, Nanotechnology for 

electrotechnical products and systems) of the International Electrotechnical Commission (IEC).  

6.3.2. SCALED TECHNOLOGY MATERIALS FOR MORE MOORE 

As described in the More Moore chapter, after 2027 there is no headroom for 2D geometry scaling and 3D VLSI integration of 

circuits and systems using sequential/stacked integration approaches will likely begin. Whether one is considering 2D geometry 

scaling or 3D integration, there are numerous materials challenges to achieving increasing device density and integrated 

performance. The following outlines key materials challenges for transistor scaling and integration, lithography, interconnects, 

heterogenous integration, assembly and packaging, and outside system connectivity. 

6.3.2.1. MATERIALS FOR TRANSISTOR SCALING AND INTEGRATION 

Continued increases in transistor device density require a variety of new materials and processes including new channels (Ge, 

III-V), improved doping techniques, gate stacks and contacting structures. Table EMI3 provides a set of materials and processes 

priorities for transistor scaling and integration. 

Table EMI3 Materials for Transistor Scaling and Integration 

 

6.3.2.2. MATERIALS FOR LITHOGRAPHY AND PATTERNING 

The future of scaled technologies depends upon emerging patterning materials (resist or self-assembled) to enable extensible 

lithographic capabilities. New resist materials must concurrently exhibit higher resolution, higher sensitivity, reduced line edge 
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roughness, and sufficient etch resistance to enable robust pattern transfer. 193nm and EUV extension materials are being 

developed, which can improve LWR, pattern shrink materials, and topcoats for EUV to ameliorate issues with out-of-band 

optical flare and outgassing. Evolutionary approaches for enhancing positive, negative, and chemically amplified families of 

resists will continue to be evaluated. Leading process approaches to pitch division include multiple patterning (MP) and spacer 

patterning (SP) as options for extending 193 nm immersion lithography. Alternate technologies are utilizing patterning 

materials to create guide patterns for directed self-assembly, which can include resists to form chemoepitaxy and graphoepitaxy 

guides, or directly patternable brushes and SAMs. Directed self-assembly (DSA) with block-copolymers or polymer pairs has 

made significant progress in characterizing sources of defect formation and in applications such as contact rectification, fin 

patterning, and pattern density multiplication. Table EMI4 provides a set of materials and processes priorities for lithography 

and patterning. 

Table EMI4 Materials for Lithography and Patterning 

 

6.3.2.3. INTERCONNECT MATERIALS 

Key challenges for continued increased performance of future integrated circuit interconnects consist of maintaining reductions 

of RC time constants for delivery of signals and power with high reliability. For copper interconnects, the sidewall copper 

barrier thickness must continue to be reduced, which is a significant challenge. For post copper interconnect scaling, novel 

interconnects, such as carbon nanotubes, are being explored. Several elemental metals have been studied by simulation and 

experiments to identify potential candidates for post-Cu interconnect materials at highly scaled dimension.1200 The interconnect 

material space becomes significantly larger when alloys and compounds are considered, and machine learning assisted data 

analysis has been employed to filter this vast material space. Also, lower dielectric constant (κ for both intra and inter level 

dielectric are needed; however, each of these emerging families of materials must overcome significant challenges for them to 

warrant adoption. Airgap, another approach to reducing the effective κ, places additional requirements on barrier layers or 

novel interconnects. Table EMI5 provides a set of materials and processes priorities for interconnects. 

Table EMI5 Interconnect Materials 

 

6.3.2.4. HETEROGENEOUS INTEGRATION, ASSEMBLY AND PACKAGING MATERIALS 

The EMI and Heterogeneous Integration teams are in the process of prioritizing key heterogeneous integration and 

assembly & packaging EMI challenges, which include: 

▪ New engineered materials: substrate, mold, underfill, wafer bond alloys, solder alloys 

▪ Conductors: Nanomaterials (CNT, graphene, NWs), metals (Cu, Al, W, Ag, etc.), composites 

▪ Dielectrics: Oxides, polymers, porous materials, composites 

▪ Semiconductors: Elemental (Si, Ge), Compounds (SiC, III-V, II-VI, tertiary), polymers 

▪ Critical factors: Cost, CTE differential, thermal conductivity, fracture toughness, modulus, processing temperature, 

interfacial adhesion, operating temperature, and breakdown field strength 

Table EMI6 provides a set of heterogeneous integration and assembly and packaging priorities for EMI.  

Table EMI6 Heterogeneous Integration, Assembly and Packaging Materials 

 

6.3.2.5. MATERIALS CHALLENGES FOR OUTSIDE SYSTEM CONNECTIVITY 

Table EMI7 provides a set of top Outside System Connectivity material priorities for EMI. 

Table EMI7 Emerging Research Materials Needs for Outside System Connectivity 

 

6.3.3. EMERGING MATERIALS FOR MEMORY, BEYOND CMOS LOGIC AND COMPUTING 

Beyond 2030, MOSFET scaling will likely become ineffective and/or very costly. As described in this chapter, completely new, 

non-CMOS types of memory, logic devices and maybe even new circuit architectures are potential solutions. Such solutions 

ideally can be integrated onto the Si-based platform to take advantage of the established processing infrastructure, as well as 

being able to include Si devices such as memories onto the same chip. The following outlines key materials challenges for 

emerging materials for memory, beyond CMOS logic and alternative information processing. 
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6.3.3.1. EMERGING MATERIALS FOR MEMORY 

Emerging memory devices includes capacitive memories (Fe FET), and resistive memories including ferroelectric devices, 

resistance change devices, devices based on Mott transitions and novel magnetic memories. Another key requirement for 

memory technology is the development of corresponding select devices that access only the selected memory cell of interest 

without perturbing non-selected cells. Table EMI8 provides a set of materials and associated challenges for emerging memory 

materials, and Table EMI9 provides materials and associated challenges for memory select. 

Table EMI8 Emerging Materials for Memory 

Table EMI9 Emerging Materials for Memory Select 

 

6.3.3.2. EMERGING MATERIALS FOR ADVANCED AND BEYOND-CMOS LOGIC DEVICES 

There are generally two classes of devices/materials for advanced and beyond-CMOS logic devices. The first are those that do 

not involve spin or magnetism such as ferroelectric FETs, nanoelectromechanical (NEM) switches, topological FETs, and 

transistors based on collective electron phenomena such as Mott effect or exciton condensation (BiSFET). The second are those 

based on spin and magnetism that each uses a variety of materials. Negative-capacitance topological quantum FET was 

proposed to achieve extremely low switching voltages and energies. 1201  Table EMI10 contains materials and associated 

challenges for the non-spin devices. Table EMI11 maps various spin device concepts to associated materials types and Table 

EMI12 describes the requirements of these materials. 

Table EMI10 Emerging Materials for Advanced and Beyond-CMOS Logic Devices  

Table EMI11 Spin Devices versus Materials 

Table EMI12 Spin Material Requirements and Properties 

 

6.3.3.3. EMERGING MATERIALS FOR NOVEL COMPUTING 

Emerging materials spur developments of novel computing, such as neuromorphic computing, reinforcement learning, 

topological quantum computing, and reversible computing, and probabilistic computing. Since the performance of the 

computing is considered to be dependent on the intrinsic properties of the emerging material, the material research will further 

boost the performance, such as the energy efficiency 1202,1203,1204,1205,1206,1207. Two-dimensional materials are also expected to 

play an important role in memristors for neuromorphic computing.1208, 1209 

6.3.4. METROLOGY NEEDS AND CHALLENGES FOR EMERGING RESEARCH MATERIALS 

Metrology is needed to characterize composition, properties, and understand structure of emerging research materials, at 

nanometer dimensions and below. The difficult EMI metrology challenges would be those associated with the introduction of 

directed self-assembly (DSA), such as evaluating critical material properties, size and location of features, registration, and 

defects.  Also needed are non-destructive methods for characterizing embedded materials and interfaces defects in nano-scale 

devices,1210  as well as platforms that enable simultaneous measurement of complex nanoscopic properties. Table EMI13 

summarizes the current set of continuing and prioritized metrology related EMI challenges and needs.  

Table EMI13 Metrology Needs and Challenges for Emerging Research Materials 

 

6.3.5. NEEDS AND CHALLENGES OF EMERGING RESEARCH MATERIALS FOR ESHS 

Research and development of Beyond CMOS devices will be stout under limitation of Green Materials. Therefore, the close 

liaison with Environment, Safety, Health and Sustainability (ESHS) will continue to be an important issue. 
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Figure EMI2 Liaison concept of EMI and ESHS 

 

6.4. EMERGING/DISRUPTIVE CONCEPTS AND TECHNOLOGIES 

As mentioned at the beginning of the chapter, new system integrators, from mobile to data centers to the Internet of Everything, 

have appeared with new and complex technology requirements. These application domains require a highly interdisciplinary set 

of expertise, e.g., electrical and mechanical engineering; as well as materials, biological, medical, energy, aerospace, 

transportation, communication, and sustainability sciences. The trend towards the convergence of monolithically integrated 

functional diversification with miniaturization manifests as increasing complexity in the road-mapping process. Collaborative 

transdisciplinary research is needed to identify materials and processes that catalyze breakthrough and convergent advances in 

these technologies. Initiatives that leverage the expertise of colleagues in adjacent spaces who know the local environment, e.g., 

biology, energy, etc., will help to drive novel approaches and more optimal materials, process, manufacturing, and performance 

solutions to emerging IoT challenges than can be achieved by semiconductor centric approaches. As examples, (6.4.1) transient 

concept and (6.4.2) development aided by machine learning (Table EMI14) are shown. Table EMI15 identifies several 

emerging application opportunities that will drive and enhance future EMI working group activities. 

6.4.1. TRANSIENT ELECTRONICS 

Transient electronics is an emerging field that requires materials, devices, and systems to be capable of disappearing with 

minimal or non-traceable remains in a controllable period of time.  The spontaneous and transient function appears after the 

stable operation. This emerging electronics with the disintegrating capability will bring about intelligent applications in various 

scenes, such as bioelectronics, environmentally friendly electronics 1211 , 1212 , 1213 , 1214 . The conductance change with the 

controllable decay characteristics was demonstrated in molecular gap atomic switches 1215,1216. 

6.4.2. MODELING AND SIMULATION FOR EMERGING MATERIALS DEVELOPMENTS 

Simulation for designing material structures matching to targeted performance needs hierarchical understanding of material 

from nanometer scale to centimeter scale. First-principles approaches are developed to provide theoretical insight into emerging 

materials and in silico exploration of as-yet-unreported materials.1217 Oppositely, despite its importance for the future design of 

device structures, the development of simulation for emerging devices is just beginning. 1218  This requires multiscale 

understanding in space and time for phenomena in materials. For instance, the individual atom-atom interaction derived from 

chemical bonding given by details of electronic structures can be scaled up to mechanical response of many atoms against 

macroscopic load, which gives understanding of elastic behavior of crystals1219. Meanwhile, a performance of fuel cell can be 

derived from macro-model originated from the rate equation of chemical reactions of individual molecules1220. Multiscale view 

of carrier transport in organic devices were treated by considering molecular orbital levels to mesoscopic scale of electron-

hopping 1221,1222,1223. Beside the direct approach on multiscale physics, aid of machine learning can bridge the difference scales 

phenomena in composite material 1224 . These approaches will accelerate the simulation, while proper modeling with 

understanding of natural physics in difference scales of time and space are still necessary. Finite element analysis (FEA) models 

will have to be further developed so that they can adequately represent 2D and other nanomaterials.  
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Table EMI14 Modeling and Simulation 

 

 

Figure EMI3 An Example of the Role of Machine Learning in the Multiscale Simulation  

Note: The left shows conventional multiscale physics where physics to explain mesoscopic level phenomena is required to link molecular and 

continuum level phenomena. The right shows a potential role of machine learning that provides output of continuum level phenomena from 

inputs of molecular level phenomena.  

 

Table EMI15 Summary of Potentially Disruptive Emerging Research Materials Application Opportunities 

 

6.5. CONCLUSIONS AND RECOMMENDATIONS 

The IRDS represents a strategic repositioning of the community’s scope, needs, and set of emergent opportunities. In alignment 

with this new perspective, this edition of the EMI chapter represents a work in transition that has aligned difficult challenges 

with the needs of related IRDS working groups. Much of the information in the detailed tables comes from prior ERM chapters 

and current IRDS working groups. Future editions of EMI will provide additional detailed descriptions and continue to adapt its 

scope to engage with a new set of EMIs, many of which will be identified by the IRDS working groups. 

7. ASSESSMENT  

7.1. INTRODUCTION 

It is important to evaluate beyond-CMOS devices considered in this chapter against current CMOS technologies. Two methods 

of assessments have been reported: a “survey-based assessment” conducted previously by the ITRS ERD working group and a 

“quantitative device benchmarking” conducted by the Nanoelectronics Research Initiative (NRI).  

Up to the 2013 ERD Chapter, a survey-based critical review was conducted based on eight criteria to compare emerging 

devices against CMOS. Spider chart has been used to visualize the perceived potential of these technology entries. However, 

the limited number of survey results sometimes raises questions of the accuracy of this survey. The most recent “survey-based 

assessment” was conducted in the 2014 ERD Emerging Memory and Logic Device Assessment Workshops (Albuquerque, 

NM). The survey collects voting on emerging technologies evaluated in the workshops in the categories of the “most 

promising” and the “most need of resources” to assess the potential of these technology entries perceived by ERD experts. A 

summary of previous survey-based assessments is included in section 7.3 “Archive”. 

In the “NRI benchmarking”, each emerging device is evaluated by its operation in conventional Boolean Logic circuits, e.g., a 

unity gain inverter, a 2-input NAND gate, and a 32-bit shift register. Metrics evaluated include speed, areal footprint, power 

dissipation, etc. Each parameter is compared with the performance projected for high-performance and low-power 5 nm 

CMOS.  

Most of the proposed beyond-CMOS devices are very different from their CMOS counterparts, and often pass computational 

state variables (or tokens) other than charge. Alternative state variables include collective or single spins, excitons, plasmons, 

photons, magnetic domains, polarization, etc. With the multiplicity of programs characterizing the physics of proposed new 
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structures, it is necessary to find ways to benchmark the technologies effectively. This requires a combination of existing 

metrics used for CMOS and new metrics which take into consideration the idiosyncrasies of the new device behavior. Even 

more challenging is to extend this process to consider new circuits and architectures beyond the Boolean logic used by CMOS 

today, which may enable these devices to complete transactions more effectively.  

7.1.1. ARCHITECTURAL REQUIREMENTS FOR A COMPETITIVE LOGIC DEVICE 

The circuit designers and architects depend on the logic switch to exhibit specific desired characteristics in order to successfully 

realize a wide range of applications. These characteristics,1225 which have since been supplemented in the literature, include: 

• Inversion and flexibility (can form an infinite number of logic functions) 

• Isolation (output does not affect input) 

• Logic gain (output may drive more than one following gate and provides a high Ion/Ioff ratio) 

• Logical completeness (the device is capable of realizing any arbitrary logic function) 

• Self-restoring / stable (signal quality restored in each gate) 

• Low cost manufacturability (acceptable process tolerance) 

• Reliability (aging, wear-out, radiation immunity) 

• Performance (transaction throughput improvement) 

• Span of control (measures number of devices that may be reached within a characteristic delay of the switch1226)  

Devices with intrinsic properties supporting the above features will be adopted more readily by the industry. Moreover, devices 

which enable architectures that address emerging concerns such as computational efficiency, complexity management, self-

organized reliability and serviceability, and intrinsic cyber-security1227 are particularly valuable. 

7.2. NRI BEYOND-CMOS BENCHMARKING  

The Nanoelectronics Research Initiative (https://www.src.org/program/nri/) has quantitatively evaluated quite a few beyond-

CMOS technologies.1228, 1229,1230 Several NRI devices have been described in detail in the Logic and Emerging Information 

Processing Device Section. While beyond-CMOS device benchmarking is still very much a work in progress – and no concrete 

decisions have been made on which devices should be chosen or eliminated as candidates to significantly extend or augment 

CMOS – this section summarizes some of the data and insights gained from these studies. Further benchmarks may alter some 

of the conclusions here and the outlook on some of these devices, but the overall message on the challenges of beyond-CMOS 

devices remains valid.  

7.2.1. QUANTITATIVE RESULTS  

NRI benchmarking analyzes the potential of major emerging switches using a variety of information tokens and communication 

transport mechanisms. Specifically, the projected effectiveness of these devices used in a number of logic gate configurations 

was evaluated and normalized to CMOS at the 5nm generation (projection). The initial work has focused on “standard” 

Boolean logic architecture, since the CMOS equivalent is readily available for comparison. It should be noted that the majority 

of devices are evaluated via simulations since many of them have not yet been built, so it should be considered only a “snapshot 

in time” of the potential of any given device. Data on all of them are still evolving.  

At a high level, the data from these studies corroborates qualitative insights from earlier works, suggesting that many new logic 

switch structures may have some advantages over CMOS in terms of power or energy, but they are also inferior to CMOS in 

delay. This is perhaps not surprising; the primary goal for nanoelectronics and NRI is to find a lower power device1231 since 

power density is a primary concern for future CMOS scaling. The power-speed tradeoffs commonly observed in CMOS also 

extend to beyond-CMOS devices. It is important to understand the impact of transport delay for the different information tokens 

these devices employ. Communication with many non-charge tokens can be significantly slower than moving charge, although 

this may be balanced in some cases with lower energy for transport. The combination of the new balance between switch speed, 

switch area, and interconnect speed can lead to advantages in the span of control for a given technology. For some of the 

technologies (e.g., nanomagnetic logic), there is no strong distinction between the switch and the interconnect, indicating the 

need for novel architecture to exploit unique attributes of these technologies.  

A simplified 32-bit arithmetic logic unit (ALU) was built from these devices to evaluate their performance, as shown in Figure 

BC7.1(a) 1232. While tunneling devices show limited advantages over CMOS in terms of energy-delay product, most beyond-

CMOS devices are inferior to CMOS in energy and/or delay. For example, spintronic devices tend to be slower than CMOS and 

also show no energy advantage.  
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(a) 
 

(b) 

Figure BC7.1 (a) Energy versus Delay of a 32-bit ALU for a Variety of Charge- and Spin-based Devices; 

(b) Energy versus Delay per Memory Association Operation Using Cellular Neural Network (CNN) for a Variety of 

Charge- and Spin-based Devices1232 

At the architecture level, the ability to speculate on how these devices will perform is still in its infancy. While the ultimate goal 

is to compare at a very high level—e.g., how many MIPS can be produced for 100 mW on 1 mm2? —the current work must 

extrapolate from only very primitive gate structures. One initial attempt to start this process has been to look at the relative 

“logical effort”1233 for these technologies, a figure of merit that ties fundamental technology to a resulting logic transaction. 

Several of the devices appear to offer advantage over CMOS in logical effort, particular for more complex functions, which 

increases the urgency of doing more joint device-architecture co-design for these emerging technologies.  

The direction of device-architecture co-optimization has driven NRI benchmarking to explore non-Boolean applications of 

beyond-CMOS devices. Cellular neural network (CNN) has been utilized as a benchmarking model that has been implemented 

with various novel devices.1232 The energy and delay of CNN based on beyond-CMOS devices are compared with CMOS-based 

CNN in Figure BC7.1(b). Tunneling devices have significant performance improvement because of their steep subthreshold 

slopes and large driving current at ultra-low supply voltage. Interestingly, spintronic devices are much closer to the preferred 

corner in CNN implementation in comparison with 32-bit ALU. This is because some characteristics of spintronic devices (e.g., 

spin diffusion, domain wall motion) may mimic the functionality of a neuron (e.g., integration) more naturally in a single 

device.   

7.2.2. OBSERVATIONS 

A number of common themes have emerged from these benchmarking studies and in the observations made during recent 

studies of beyond-CMOS devices.  

1. The low voltage energy-delay tradeoff conundrum will continue to be a challenge for all devices. Getting to low 

voltage must remain a priority for achieving low power, but new approaches to achieve sufficient throughput with 

“slow” devices must be developed. 

2. Most of the architectures that have been considered to date in the context of new devices utilize binary logic to 

implement von Neumann computing structures. In this area, CMOS implementations are difficult to supplant because 

they are very competitive across the spectrum of energy, delay and area – not surprising since these architectures have 

evolved over several decades to exploit the properties of CMOS most effectively. Novel electron-based devices—

which can include devices that take advantage of collective and non-equilibrium effects—appear to be the best 

candidates as a drop-in replacement for CMOS for binary logic applications. 

3. As the behavior of other emerging research devices becomes better understood, work on novel architectures that 

leverage these features will be increasingly important. A device that may not be competitive at doing a simple NAND 

function may have advantages in doing a complex adder or multiplier instead. Understanding the right building blocks 

for each device to maximize throughput of the system will be critical. This may be best accomplished by thinking 

about the high-level metric a system or core is designed to achieve (e.g., computation, pattern recognition, FFT, etc.) 

and finding the best match between the device and circuit for maximizing this metric. 
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4. Patterning, precision layer deposition, material purity, dopant placement, and alignment precision critical to CMOS 

will continue to be important in the realization of architectures using these new switches. 

5. Assessment of novel architectures using new switches must also include the transport mechanism for the information 

tokens. Fundamental relationships connecting information generation with information communication spatially and 

temporally will dictate CMOS’ successor. 

Based on the current data and observations, it is clear that CMOS will remain the primary basis for IC chips for the coming 

years. While it is unlikely that any of the current emerging devices could entirely replace CMOS, several do seem to offer 

advantages, such as ultra-low power or nonvolatility, which could be utilized to augment CMOS or to enable better 

performance in specific application spaces. One potential area for entry is special-purpose accelerators that could off-load 

specific computations from the primary general-purpose processor and provide overall improvement in system performance. If 

scaling slows in delivering the historically expected performance improvements in future generations, heterogeneous multi-core 

chips may be a more attractive option. These would include specific, custom-designed cores dedicated to accelerate high-value 

functions, such as accelerators already widely used today in CMOS (e.g., encryption/decryption, compression/decompression, 

floating point units, digital signal processors, etc.), as well as potentially new, higher-level functions (e.g., voice recognition). 

While integrating dissimilar technologies and materials is a big challenge, advances in packaging and 3D integration may make 

this more feasible over time. 

An accelerator using a non-CMOS technology would likely need to offer an order of magnitude performance improvement 

relative to its CMOS implementation to be considered worthwhile. That is a high bar, but there may be instances where the 

unique characteristics of emerging devices, combined with a complementary architecture, could be advantageous in 

implementing a particular function. At the same time, the changing landscape of electronics (moving from uniform, general-

purpose computing devices to a spectrum of devices with varying purposes, performance, and power constraints) and the 

changing landscape of workloads and processing needs (e.g., big data, unstructured information, real-time computing, 3D rich 

graphics) are increasing the need for new computing solutions. Therefore, future beyond-CMOS research should focus on 

specific emerging functions and device-architecture co-optimization to achieve solutions that can break through the current 

power/performance limits. 

7.3. ARCHIVE  

The survey-based emerging device assessment has not been continued after the 2015 International Technology Roadmap for 

Semiconductors (ITRS) Emerging Research Devices (ERD) chapter. Previous survey-based assessments are summarized here 

for references.  

7.3.1. EMERGING DEVICE ASSESSMENT IN 2014 ERD WORKSHOPS 

In August 2014, ERD organized an “Emerging Memory Device Assessment Workshop” and an “Emerging Logic Device 

Assessment Workshop”, where nine memory devices and fourteen logic devices were evaluated. A survey was conducted in the 

workshops for the experts to vote on the “most promising” devices and devices “needing more resources”. Figure BC7.2 shows 

the relative number of votes received by emerging devices in these two categories, ranked from high to low in the “most 

promising” category (red color bars).  

 

 

(a) 
 

(b) 

Figure BC7.2 (a) Survey of Emerging Memory Devices and (b) Survey of Emerging Logic Devices in 2014 

ERD Emerging Logic Workshop (Albuquerque, NM) 
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In the “most promising” memory device category, the vote clearly accumulated to a few well-known memory devices: 

STTRAM, ReRAM (including CBRAM and oxide-based ReRAM), and PCM, ranked from high to low. Some memory devices 

received few vote, due to lack of progress. Results in this category reflect consensus among experts based on R&D status of 

these devices. The “need more resources” category reflects perceived value of these devices and experts’ consideration of R&D 

resource allocation for these devices. For example, with heavy R&D investment on STTRAM that is considered most 

promising, it is not surprising that it ranks low in the need of resources. The strong interest in emerging FeFET memory is 

closely linked to the discovery of ferroelectricity in doped HfOx. Among emerging logic devices, “carbon nanomaterial device” 

(mainly carbon nanotube FET), tunnel FET, and nanowire FET were ranked as one of the most promising emerging logic 

devices. Notice that they are all charge-based devices, but involve novel materials, structures, and mechanisms. “Piezotronic 

transistors”, “negative-capacitance FET”, and “2D channel FET” were considered top choices for enhanced research investment. 

7.3.2. 2013 ERD SURVEY CRITERIA, METHODOLOGY, AND RESULTS 

In the traditional survey-based assessment conducted by ERD, a set of relevance or evaluation criteria are used to parameterize 

the extent to which “CMOS Extension” and “Beyond CMOS” technologies are applicable to memory or information processing 

applications. These criteria are: 1) Scalability, 2) Speed, 3) Energy Efficiency, 4) Gain (Logic) or ON/OFF Ratio (Memory), 5) 

Operational Reliability, 6) Operational Temperature, 7) CMOS Technological Compatibility, and 8) CMOS Architectural 

Compatibility. Description of each criterion can be found in 2013 ERD chapter.  

 

Figure BC7.3 Comparison of Emerging Memory Devices Based on 2013 Critical Review  

Each CMOS extension and beyond-CMOS emerging memory and logic device technology is evaluated against these criteria 

according to a single factor. For logic, this factor relates to the projected potential performance of a nanoscale device 

technology, assuming its successful development to maturity, compared to that for silicon CMOS scaled to the end of the 

Roadmap. For memory, this factor relates the projected potential performance of each nanoscale memory device technology, 

assuming its successful development to maturity, compared to that for ultimately scaled silicon memory technology which the 

new memory would displace. Performance potential for each criterion is assigned a value from 1–3, with “3” substantially 

exceeding ultimately-scaled CMOS, and “1” substantially inferior to CMOS or a comparable existing memory technology. This 

evaluation is determined by a survey of the ERD Working Group members composed of individuals representing a broad range 

of technical backgrounds and expertise. Details of the assessment results can be found in the 2013 ERD chapter.  

Although this survey-based critical review has been conducted in ERD for several versions and has been widely cited in 

literatures, the decreasing number of votes of some less popular devices has raised concerns about the accuracy of some of the 

results. Figures BC7.3 and BC7.4 summarize the last critical review conducted in 2013 for emerging memory devices and 

emerging logic devices, respectively. Notice that the technology entries in these figures are based on the 2013 ERD chapter, 

while some of them have been removed in this chapter (e.g., molecular memory, atomic switch, etc.).  

Since “3” represents the best result and “1” the worst in the spider chart, devices with larger circle area represent more 

promising devices. In Figure BC7.4 for emerging logic devices, the perceived potential of “beyond-CMOS devices” is 

generally poorer than “CMOS-extension devices”. Within “beyond-CMOS devices”, “non-charge-based devices” area 

perceived slightly less promising than “charge-based devices”. The general trend is consistent with the quantitative NRI 

assessment in section 7.2. Multiple factors contribute to this result, including the strength of CMOS as a platform technology, 

the challenges of beyond-CMOS devices in materials and fabrication, the lack of memory and interconnect solutions for 

beyond-CMOS devices, etc.  
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(a) CMOS extension devices (b) Charge-based beyond-CMOS devices 

 

 

(c) Non-charge-based beyond-CMOS devices 

Figure BC7.4 Comparison of Emerging Logic Devices Based on 2013 ITRS ERD Critical Review: (a) CMOS 

Extension Devices; (b) Charge-based Beyond-CMOS Devices; (c) Non-charge-based Beyond-CMOS Devices 

 

8. SUMMARY  

The “Beyond CMOS” chapter systematically surveys emerging memory and logic devices (sections 2 and 3), novel 

technologies (section 4), and alternative architectures and computing paradigms (section 5), to explore potential solutions 

beyond the conventional scaling of CMOS technologies. Although high performance at low power consumption has been a 

primary objective of beyond-CMOS devices, novel functionalities and applications have become increasingly important. The 

recent emergence of energy-efficient data-intensive cognitive applications is also shifting the emphasis from high-precision 

computing solutions to novel computing paradigms with massive parallelism and bio-inspired mechanisms. Research 

opportunities exist in the co-optimization of beyond-CMOS devices and architectures to explore unique device characteristics 

and architectural designs. 

Although a beyond-CMOS device competitive against CMOS FET has not been identified, beyond-CMOS devices with 

dramatically enhanced scalability and performance while simultaneously reducing the energy dissipation per functional 

operation would still be fundamentally important and a worthwhile research objective. In considering the many disparate new 

approaches proposed to provide order of magnitude scaling of information processing beyond that attainable with ultimately 

scaled CMOS, the following set of guiding principles are proposed to provide a useful structure for directing research on 

“Beyond CMOS” information processing technology.  

• Computational State Variable(s) other than Solely Electron Charge  

These include spin, phase, multipole orientation, mechanical position, polarity, orbital symmetry, magnetic flux 

quanta, molecular configuration, and other quantum states. The estimated performance comparison of alternative state 
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variable devices to ultimately scaled CMOS should be made as early in a program as possible to down-select and 

identify key trade-offs. 

• Non-thermal Equilibrium Systems 

These are systems that are out of equilibrium with the ambient thermal environment for some period of their operation, 

thereby reducing the perturbations of stored information energy in the system caused by thermal interactions with the 

environment. The purpose is to allow lower energy computational processing while maintaining information integrity. 

• Novel Energy Transfer Interactions 

These interactions would provide the interconnect function between communicating information processing elements. 

Energy transfer mechanisms for device interconnection could be based on short range interactions, including, for 

example, quantum exchange and double exchange interactions, electron hopping, Förster coupling (dipole–dipole 

coupling), tunneling and coherent phonons. 

• Nanoscale Thermal Management  

This could be accomplished by manipulating lattice phonons for constructive energy transport and heat removal.  

• Sub-lithographic Manufacturing Process  

One example of this principle is directed self-assembly of complex structures composed of nanoscale building blocks. 

These self-assembly approaches should address non-regular, hierarchically organized structures, be tied to specific 

device ideas, and be consistent with high volume manufacturing processes. 

• Alternative Architectures  

In this case, architecture is the functional arrangement on a single chip of interconnected devices that includes 

embedded computational components. These architectures could utilize, for special purposes, novel devices other than 

CMOS to perform unique functions.  
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