
THE INTERNATIONAL ROADMAP FOR DEVICES AND SYSTEMS:  2022 
COPYRIGHT © 2022 IEEE. ALL RIGHTS RESERVED. 

 
 
 
 
 

 

 
 

INTERNATIONAL  
ROADMAP  

FOR  
DEVICES AND SYSTEMS™ 

 
2022 WHITE PAPER 

 
AUTONOMOUS MACHINE COMPUTING 

 

 

THE IRDSTM IS DEVISED AND INTENDED FOR TECHNOLOGY ASSESSMENT ONLY AND IS WITHOUT REGARD TO 

ANY COMMERCIAL CONSIDERATIONS PERTAINING TO INDIVIDUAL PRODUCTS OR EQUIPMENT. 

 

 

 



Note that this white paper is a shorter but a more technical version of Liu, S. and Gaudiot, J.L., 2022. 
Rise of the Autonomous Machines. Computer, 55(1), pp.64-73. 

IEEE International Roadmap on Devices and 
Systems (IRDS) 

Autonomous Machines White Paper 
Shaoshan Liu1 Senior Member IEEE 
Jean-Luc Gaudiot2 Life Fellow IEEE 

1PerceptIn Inc 
2University of California, Irvine, U.S.A. 

Autonomous machines, e.g. autonomous vehicles, are extremely complex systems that integrate 
many pieces of technologies [1].  For autonomous machines to become an integral part of our 
daily life, we are still facing many technical challenges. In this white paper, we categorize the 
technical challenges that are related to devices and systems, introduce the current status and 
roadblocks, as well as potential research directions.  

Area 1:  The On-Machine Compute System 

As opposed to other computing workloads, autonomous machines have a very deep processing 
pipeline, or computation graph, with strong dependencies between the different stages and strict 
deadlines associated with each stage [2]. For instance, Figure 1 presents an overview of the 
processing pipeline of a level 4 autonomous driving system.  

Starting from the left side of the figure, the system consumes raw sensing data from mmWave 
radars, LiDARs, cameras, and Global Navigation Satellite System (GNSS) receivers and Inertial 
Measurement Units (IMUs), where each sensor produces raw data at its own frequency:  the 
cameras capture images at 30 FPS and feed the raw data to the 2D Perception module, the LiDARs 
capture point clouds at 10 FPS and feed the raw data to the 3D Perception module as well as the 
Localization module, the GNSS/IMUs generate positional updates at 100 Hz and feed the raw data 
to the Localization module, and the mmWave radars detect obstacles at a rate of 10 FPS.  All this 
raw data is then fed to the Perception Fusion module.  

Next, the results of the 2D and 3D Perception Modules are fed into the Perception Fusion 
module at 30 Hz and 10 Hz respectively to create a comprehensive perception list of all detected 
objects. The perception list is then sent to the Tracking module at 10 Hz to create a tracking list 
of all detected objects.  The tracking list then is fed into the Prediction module at 10 Hz to create 
a prediction list of all objects. After that, both the prediction results and the localization results 
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are received by the Planning module at 10 Hz to generate a navigation plan which then goes into 
the Control module at 10 Hz to generate control commands.  These are in turn sent to the 
autonomous vehicle for execution at 100 Hz.    

Hence, every 10 ms, the autonomous vehicle needs to generate a control command to 
maneuver the autonomous vehicle. If any upstream module, such as the Perception module, 
misses the deadline to generate an output, the Control module must still generate a command 
before the deadline. This could lead to disastrous results as the autonomous vehicle would then 
be essentially driving blindly without timely participation from the perception unit. 

Figure 1: The processing pipeline of an autonomous vehicle 

To minimize the end-to-end latency, one commercial approach is to build a proprietary on-
machine computing system to map sensing and computing tasks to the best compute substrates 
to achieve optimal performance and energy consumption [3]. However, this design evolves 
through trial and error, and the whole design process takes much time with multiple iterations.  
This is the same approach that many autonomous vehicle companies take:  they deploy ad hoc 
solutions to ensure on-time autonomous vehicle product release. These are product-specific and 
hard to generalize to other autonomous vehicle designs, hence leading to high re-engineering 
costs for each product.   

Challenge:  a key technical challenge of designing autonomous vehicle compute system is to 
develop an appropriate computer architecture, along with a software stack that allows the 
flexibility of mapping various computation graphs from different types of autonomous vehicles 
to the same compute substrate, while meeting the real-time performance, cost, and energy 
constraints. Existing CPUs meet the flexibility requirement but fail to meet the performance and 
energy constraints, whereas other compute substrates, especially accelerators, typically target 
to meet the performance and energy constraints of one module, e.g., Perception, without 
optimizing the end-to-end system.   

Area 2:  The Perception System 

Perception is essential to any autonomous machine applications where sensory data and artificial 
intelligence techniques are involved.  The final objective of perception is to extract spatial and 
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semantic information from the raw sensing data so as to allow the machine to construct a 
comprehensive understanding of its operating environment. Such understanding includes the 
types, positions, headings, speeds, and dimensions of all objects in the environment.    

There are two categories of perception for autonomous machines, the deep learning-based 
approach and the geometry-based approach.  The deep learning-based approach is mainly used 
to extract semantic information and is heavily used in applications such as object detection, scene 
understanding, segmentation, tracking and prediction, etc.  Within an autonomous machine’s 
perception system, multiple deep learning models are running simultaneously, e.g., networks for 
2D perception, networks for 3D perception, and networks for tracking and prediction.  
Nonetheless, deep learning-based perception is often the performance bottleneck in 
autonomous machines.  It thus becomes a painful tradeoff between perception quality and 
compute and energy resource utilization.  

The geometry-based approach is mainly used to extract positional and dimensional 
information of the target objects.  A most common instance of geometry-based perception 
application is the real-time stereo vision used for autonomous machine navigation, obstacle 
avoidance, and scene reconstruction. Stereo vision allows autonomous machines to obtain 3D 
structure information of the scene. A stereo vision system typically consists of two cameras to 
capture images from two points of view. Disparities between the corresponding pixels in two 
stereo images are detected using stereo matching algorithms. Depth information can then be 
calculated from the inverse of this disparity.  Autonomous machines must fuse the positional and 
dimensional information and the semantic information of the target objects to form a 
comprehensive understanding of their environments.  

Challenge:  a key technical challenge for perception is in the development of a general framework 
to generate reliable and precise understanding of the operating environment in real time. 
Reliable and precise perception can be achieved by fusing various perception results, such as 2D 
semantics, 3D semantics, and 3D geometry, an area still currently under active research. On the 
other hand, to achieve real-time performance, software approaches such as the compression-
compiler co-design method that combines the compression of deep learning models and their 
compilation to optimize both the size and speed of deep learning models [4, 5].  Hardware 
approaches such as hardware accelerators for perception modules [6, 7, 12] can be taken.  
Ultimately, more research is required to determine what combination of software and hardware 
approaches will be most effective in achieving real-time performance for the perception system. 

Area 3:  The Localization System 

Fundamental to autonomous machines is localization, i.e., ego-motion estimation, which 
calculates the position and orientation of an agent in each frame of reference. Formally, 
localization generates the six degrees of freedom (DoFs) pose, including the three DoFs for the 
translational pose, which specify the <x, y, z> position, and the three DoFs for the rotational pose, 
which specify the orientation about three perpendicular axes, i.e., yaw, roll, and pitch. Knowing 
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the translational pose fundamentally enables an autonomous machine to plan its path and to 
navigate, while the rotational pose further lets it stabilize itself. 

Localization is highly sensitive to the operating environment, as different environments require 
different sensors and algorithms. For instance, in outdoor environments which usually provide 
stable GNSS signals, the compute-light visual inertial odometry (VIO) algorithm or LiDAR 
odometry coupled with GNSS signals achieves the best accuracy and performance. In contrast, in 
unknown, unmapped indoor environments, a LiDAR or visual Simultaneous Localization and 
Mapping (SLAM) algorithm delivers the best accuracy [8, 11]. Nonetheless, different localization 
algorithms often incur different latencies, and even worse, latency variations.  For instance, for 
visual odometry or visual SLAM, the processing latency often depends on the number of feature 
points extracted from the current image, which means large latency variations that might impact 
predictability and safety.  

Challenge:  a key technical challenge in localization is to develop a standard framework capable 
of adapting to different operating scenarios by unifying core primitives in various localization 
algorithms, and to seamlessly switch between different algorithms as the autonomous machine 
navigates through different environments. In addition, this standard framework should provide 
a desirable software baseline for acceleration which will minimize processing latency as well as 
latency variations.  

Area 4:  The Planning and Control System 

The planning and control system dictates how an autonomous machine should maneuver. 
Traditional planning and control systems must include behavioral decisions, motion planning and 
feedback control kernels [1].  Specifically, motion planning entails three steps, namely roadmap 
construction, collision detection, and graph search.  

While commonly deployed in commercial autonomous machines, traditional planning and 
control methods often utilize human-in-the-loop rule-based approaches, where engineers fine 
tune the planning and control kernels with available test data.  This approach is not only slow 
and costly, but also not robust as all “corner” cases need to be added manually.  As more rules 
must be included, the planning and control system becomes increasingly large and unwieldy and 
often fails to meet real-time requirements. In addition, rule-based methods suffer from a 
notorious difficulty to handle the multi-agent problem, or the fact that the actions taken by an 
agent can affect the behavior of other machines in the same environment, hence failing to handle 
complex traffic scenarios.  

Recently, the Deep Reinforcement Learning (DRL) for planning and control is being actively 
researched in many places worldwide. Compared to traditional planning and control methods, 
inference with DRL incurs low computational requirements during operation, especially for high 
degree of freedom configurations [9].  In addition, DRL methods are capable of handling the 
multi-agent problem, allowing autonomous machines to handle complex traffic scenarios. 
However, model training is the bottleneck for DRL-based planning and control systems, as model 
training requires a vast number of trials to gain enough experience.  This is especially the case for 
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complex scenarios where model training can easily reach millions of steps, with each setup of 
hyper-parameters or reward hypothesis taking hours or even days.  

Challenge:  while DRL-based planning and control methods are highly promising, a key technical 
challenge for planning and control remains the development of a cloud infrastructure that 
provides sufficient compute power and generates high-quality data for DRL model training. First, 
to ensure we generate enough high-quality data to train the DRL networks, we need to develop 
simulation engines that are capable of closely simulating various physical scenarios. Second, to 
greatly improve algorithm development efficiency, especially for complex scenarios, we need to 
develop a model training infrastructure that can reduce the training time by orders of magnitudes. 

Area 5:  The Cooperation among Autonomous Machines 

While traditional autonomous machines utilize only on-machine intelligence, cooperative 
autonomous machines depend on the cooperation between autonomous machines in addition 
to the infrastructure.  Take autonomous driving for example, the infrastructure-vehicle 
cooperative autonomous driving approach relies on the cooperation between intelligent roads 
and intelligent vehicles. This approach is not only safer but also more economical compared to 
the traditional on-vehicle-only autonomous driving. Based on the progress towards commercial 
deployment, a three-stage development roadmap has been proposed as follows [10]: 

• Stage 1: infrastructure-augmented autonomous driving (IAAD), in which autonomous
vehicles fuse vehicle-side and infrastructure-side perception outputs to improve safety of
autonomous driving.

• Stage 2: infrastructure-guided autonomous driving (IGAD), in which autonomous vehicles
can offload all the proactive perception tasks to the infrastructure in order to reduce per-
vehicle deployment costs.

• Stage 3: infrastructure-planned autonomous driving (IPAD), in which the infrastructure
takes care of both perception and planning, thus achieving maximum traffic efficiency and
cost efficiency.

To complete these tasks, Figure 2 presents an overview of the cooperative autonomous driving 
system architecture. It consists of the Systems on Vehicle (SoVs), the Systems on Road (SoRs), 
the intelligent transportation cloud system (ITCS), and the control center. The SoRs provide local 
perception results to the SoVs for blind spot elimination and extended perception to improve 
safety. Meanwhile, the SoRs process incoming sensor data and send the extracted semantic data 
to the ITCS for further processing.  The ITCS fuses all incoming semantic data to generate global 
perception and planning information before the control center can dispatch real-time global 
traffic information, navigation plans, and even vehicle control commands to the SoVs to achieve 
optimal traffic efficiency.  

Challenge:  a technical challenge for cooperative autonomous machines is integration, as its full 
realization relies on all the technical areas described in the previous sections.  To guide the 
progress of cooperative autonomous vehicles, the community needs to clearly define the 
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technical specifications and standards of each technical area for each stage of deployment so as 
to ensure effective technical integration.  

Figure 2: An infrastructure-vehicle cooperative autonomous driving system 

Summary 

    After more than six decades of information technology development, we believe that 
autonomous machines will completely revolutionize our daily life and our economy in the coming 
decade.  The impact of autonomous machines on our society is likely to be much deeper and 
broader than any other information technology revolution that we have experienced in the past 
decades.  To facilitate the rise of autonomous machines, in this white paper we have categorized 
the technical challenges that are highly related to electronic devices and systems.  
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