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SYSTEMS AND ARCHITECTURES 
1. INTRODUCTION 
The Systems and Architectures section of the roadmap serves as a bridge between application benchmarks and component 
technologies. The systems analyzed in this section cover a broad range of applications of computing, electronics, and photonics. 
In this chapter, we identify key challenges and technology requirements by observing the patterns in play in the systems and 
architectures anticipated during the period under study. 

To make a complex domain more approachable, we have presented information as a series snapshots taken from specific 
viewpoints, upon individual areas of concern. We start by looking at drivers for change and imminent trends across the industry. 
We consider how societal change and customer demand reveal new high value problems (Application Pull) and then look at how 
new architectural capabilities create emerging trends (Technology Push). 

In the second section, we present a series of application-specific views, each considering a different class of system, highlighting 
the goals and challenges specific to each area. We have resisted the urge to seek to classify the industry into what would be an 
impractically over-simplified hierarchy and instead urge the reader to consider each category as an isolated narrative intended to 
highlight the concerns that exist within a specified application area. In practical terms, there is considerable overlap between 
each class of system discussed and it will become immediately apparent that challenges illustrated in one section can be seen to 
repeat at different scales across many of the systems considered. Our intent is to illustrate important challenges in context, in the 
simplest form possible, for ease of communication. 

1.1. SUMMARY AND KEY POINTS 
• All types of systems considered are intrinsically linked by the lifecycle of AI and this has implications for the 

optimization of any given type. 

• Building anti-fragile supply chains is critical for sustainable growth in the industry. This is a fractal pattern that impacts 
all points in the supply chain at all scales. 

• We expect artificial intelligence and augmented reality to continue to act as important drivers for the growth of all 
four system areas, especially in supporting the massive underlying data analytic flows. 

• Our ability to optimize supply chain capabilities with AI are constrained by our current commercial models with respect 
to training data. A conceptual shift is necessary to move to the next level. 

• Internet-of-Things (IoT) and cyber-physical systems (CPS) both generate vast quantities of data that will accelerate the 
growth of big data and create a continuum of edge to cloud systems. 

• Advanced packaging is a key technology for enabling architectural diversity. Chiplets on 2.5D substrates, the wide 
variety of 3D technologies, and wafer-scale integration using fine pitch lithography can provide significantly increased 
local bandwidth.  

• When coupled with photonics technology, fabric attached memory (both DRAM-based and non-volatile), and the recent 
emergence of the RISC-V ISA and other open source hardware initiatives, future architectures could become both more 
flexible and specialized, opening up new architectural dimensions of innovation. However, managing this extreme 
heterogeneity will present difficult application development and system software challenges. 

• As data grows disproportionately at the edge, computation will follow it, with increasingly demanding workloads in 
increasingly challenging space, weight, power, performance and cost envelopes creating opportunity for non-
conventional architectures and approaches including those tailored to harvested energy. 

1.2. APPROACH TO HIGHLIGHTING KEY CHALLENGES 
To best understand the challenges currently presenting, we categorize systems by design envelope, allowing us to consider the 
aspects of Space, Weight, and Power (SWaP) as well as performance demanded in each category.  

In subsequent discussions, we consider the following four different categories of systems:  
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1. Internet-of-things edge (IoTe) devices provide sensing/actuation, computation, security, storage, and wireless 
communication. They are connected to physical systems and operate in wireless networks to gather, analyze, and react to 
events in the physical world. These are ubiquitous-scale objects that pervade the environment. 

2. Cyber-physical systems (CPS) provide real-time control for physical plants. Vehicles and industrial systems are examples 
of CPS. These can be considered ‘human analog’-scale objects that fill niches previously covered by people. 

3. Personal Augmentation devices such as smartphones, wearables and AR devices provide communication, interactive 
computation, storage, and security. For many people, smartphones provide their primary or only computing system. These 
are typically human-scale objects intended to augment the capabilities of an individual. In prior revisions of this chapter, we 
tracked this category as Mobile Devices, but this is no longer sufficient to capture the increasing diversity in this category. 

4. Cloud systems power data centers to perform transactions, provide multimedia, and analyze data. Cloud systems represent 
a trend towards a synthesis of design principles and methodologies taken from traditional enterprise, high performance 
scientific, and web native compute. Increasingly these systems are utilizing artificial intelligence to continue to improve 
operational efficiency, becoming CPS in their own right. These are macro-scale, distributed systems. 

Given the wide range of systems—ranging from self-powered monolithic very large-scale integration (VLSI) devices to industrial 
park-sized data centers—each has its own set of market drivers, challenges and opportunities, power and thermal considerations, 
technology targets and metrics as described in Sections 3 through 6.  

With respect to the previously defined categories, we identify the constraints of power consumption for associated processors 
and devices as follows: 

1. Processors with less than 10mW power consumption: processors in this category target sensing devices in IoTe systems. 
2. Processors with 100mW-10mW power consumption: processors in this category are mainly used for embedded systems, 

aiming for high performance with lower than 100mW power budget. 
3. Processor with 10W-100mW power consumption: processors in this category do not require cooling systems like heat sinks 

or cooling fans, and are used for personal augmentation and ADAS (Advanced Driver Assistance Systems) applications.  
4. Processors for high-end systems including cloud, servers and supercomputers: since there are many variations in cooling 

methods such as water cooling, power supply, and installation conditions, mainly in data centers, the constraints of power 
consumptions are different. The constraint for power consumption of systems depends on the cooling technologies and the 
total power supply of the facilities. For example, in the cloud, as long as the power efficiency of processors is kept good 
enough such that the processors can be cooled, there is no power limitation per chip. Therefore, the main criterion is the 
power efficiency of processors. 

For the modern advanced systems, the acceleration technologies such as GPU and FPGA are indispensable for high performance 
and efficiency.  While this adds burden to the software environment, the SWaP efficiency they yield is increasingly required for 
viable business models balancing operational cost versus development and maintenance costs. 

Increasingly, these four categories of systems are being combined into entire edge-to-cloud, large scale, and intelligent social 
infrastructure systems of complex interlocked information lifecycles. Each is continuing to demand ever greater capacity in 
diminishing space, weight and power envelopes, giving economic motivation to gaining as much as we can from conventional 
approaches as well as even greater potential for novel approaches.  

Although we are considering each of these categories independently, it is important to understand that the process of building AI 
solutions is a super-system that spans all the above types. Typically, data will be collected from personal augmentation and IoT 
devices at the edge and aggregated in the Cloud in order to support the efficient training of machine learning models at scale. 
These models are then packaged and deployed back to cyber-physical edge systems that can perform real time inferencing upon 
live data from the original personal augmentation and IoT devices. Thus we must consider the impact of both operational and 
training phases of these systems as they become the dominant architecture in future. 
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1.3. CROSS TEAMS 
The Systems and Architectures roadmap team interacts with several other roadmap focus teams. The Application Benchmarking 
team provides application data that informs our system architecture analysis. The Outside System Connectivity team provides 
insight into the ongoing interplay of photonics and fabrics, which at the rack, aisle, and data center scale is blurring the lines 
between compute, storage, networking infrastructure. More Moore and Beyond CMOS provide the novel computation, memory, 
and communications devices which are being increasingly required at the extremes of edge and exascale. 

Table SA-1    Application Benchmark/Systems and Architecture Cross Matrix 
 Cloud IoTe CPS PA 

Big Data Analytics Y Y Y Y 

Artificial Intelligence Y Y Y Y 

Discrete Event Simulation Y    

Physical System Simulation Y Y Y  

Optimization Y`  Y  

Graphics/AR/VR Y   Y 

Cryptographic Codes Y Y Y Y 

 

2. DRIVERS 
In this section, we discuss both Societal and Application Pull (i.e. changing demands and applications which define the targets 
that systems and architectures should fulfill) as well as Architectural and Technology Push (i.e., how the underlying technologies 
- from components to software stacks - are opening up new opportunities for growth). 

2.1. SOCIETAL AND APPLICATION PULL 
2.1.1. THE TRANSITION FROM DECISION-SUPPORT TO DECISION-MAKING SYSTEMS 
Historically, systems architectures have always been built upon the presupposition that many, independent sources of record 
provide information to support human decision-makers who integrate this information and execute appropriate actions. It is 
implicitly assumed that people are at the center of the architecture, reconciling disparate and often contradictory information. 

There are, however, fundamental limits to scale for people-centric organizations, with most demonstrating an S-curve for growth. 
Nonetheless, at the forefront of the New Economy, a growing number of enterprises are transitioning to a business model where 
machine learning is leveraged to replace people in the decision-making process, facilitating more reliable replication and 
execution of business strategy, at much larger scale. 

Given the significant commercial advantages conferred by this approach, it is anticipated that the majority of businesses will be 
forced to adopt this strategy to remain competitive. As a result, we must expect a fundamental conceptual shift in systems 
architectures, as demand moves from an annual or quarterly cadence of decision-support data that is human-readable, to a real-
time stream of moment-by-moment information intended to be acted upon by AI models. 

Societally, this is expected to introduce disruption larger in scale than the industrial revolution, with almost all industries, roles 
and products being transformed through new ways of looking at existing problems with these enabling technologies. Whilst this 
is likely to be extremely positive for the semiconductor industry in general, we should be mindful not to see the future as ‘more 
of the same, but faster’ and should anticipate a ‘Cambrian explosion’ of novel applications and products, some of which should 
be expected to disrupt the industry itself. 
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2.1.2. FOCUSING UPON ENSURING SUPPLY CHAIN ANTI-FRAGILITY1 
In previous editions of the roadmap, we have focused upon aspects of reliability, availability, serviceability and security of 
individual systems, in line with the vertically integrated and turnkey nature of many solutions within the industry. Current 
thinking in this space has evolved rapidly, however, and it is important to recognize the intrinsically fractal nature of the 
challenges found in this problem domain. Recent events have placed our attention firmly upon our position in the global supply 
chain and helped to reveal that no matter at what scale you look, you find the same set of patterns repeating at each level. 

As a result, it has become obvious that the aspects of reliability, availability, serviceability and security should be considered as 
holistic components of maintaining the supply chain. Rather than approaching the problem from a system component level, we 
should instead be mindful of how a security vulnerability in a dependency relied upon by one of our suppliers can be utilized by 
attackers to create reliability issues in our systems that in turn facilitate availability problems for our customers in ways that can 
be leveraged into adversarial attacks on a global scale. 

Manipulation of the global supply chain has become a valid target for both political and financial gain in the early 21st Century. 
On top of this, we anticipate increasing volatility as a result of climate change, geo-political unrest and the disruption of the move 
to AI upon modern society. Success under these conditions requires not just a robust and resilient supply chain position, but one 
that should be strengthened by volatility rather than merely resistant to it. 

It is important, therefore, that we view this problem as a network of systems of systems, somewhat akin to the way that the 
protocols underpinning the Internet were designed to automatically route around disruption and automatically recover from 
transient faults. 

Basic tools still include the use of increasingly higher levels of cryptographic protection, authentication, and attestation. While 
these techniques are well established over communications networks, they are now being brought down to the level of 
component-to-component communications. In addition to cryptographic protection of data both at rest and in flight, which 
requires both cipher engines as well as key management, this zero-trust model will require authentication exchanges between 
components prior to utilization. Authentication will itself require management of certificates and may eventually need to be 
linked back to a physically uncloneable function (PUF) [2] of a silicon device itself. This will place an added demand on fabs to 
not only manufacture the components but to also provide the provenance (traceability) of the components so that they can be 
authenticated prior to every use. Increasingly, the ability to detect a massive, distributed advanced persistent threat will likely 
require artificial intelligence to proactively detect anomalous behaviors across the complex edge-to-cloud infrastructure, but that 
in turn will require increases in computational efficiency and data analytics to establish the base lines and chains of evidence. 
Cybersecurity and artificial intelligence (AI) are co-dependent for continued advancement. 

Beyond this, however, is a broader commercial problem that must be addressed if we are to fully realize the benefits of AI within 
the industry. The wider goals of supply chain optimization depend upon accurate and reliable machine learning models that 
require large volumes of data for training. In the context of the supply chain, this data is owned by many stakeholders and may 
contain detail that reveals proprietary IP or commercial liability. As a result, there is an inherent bias against data sharing at a 
level that can support the necessary modeling. 

To move beyond this blocker, it will be necessary to find commercially acceptable forms of data sharing that permit 
improvements in supply chain whilst protecting business interests and confidential IP to the highest standards. 

2.1.3. EVOLUTION OF EDGE TO CLOUD PLATFORMS TOWARDS PERVASIVE DATA ANALYTICS 
All four of the following application areas are in general use: 1) Internet-of-Things networks perform important services in a 
range of applications; 2) cyber-physical systems provide essential services; 3) personal augmentation devices number in the 
billions worldwide—regardless of whether they are operated privately or for public consumption; and 4) cloud systems are 
engendering new programming languages and methodologies and cloud-native computing.  

These systems do not exist in isolation. Personal augmentation devices, IoT edge devices, and cyber-physical systems all provide 
data that is analyzed by cloud systems. Many complex systems exhibit characteristics of both IoT and CPS. Certain aspects of 
data centers and cloud systems—power management and thermal management, for example—make use of cyber-physical and 
IoT techniques. Figure SA-1 presents these associations across nine Space, Weight, and Power (SWaP) design envelopes ranging 
from embedded to exascale HPC data centers and how the IoT edge, CPS, and Data center categories overlap. A next-generation 

 
1 While fragile systems are harmed by volatility and dependable systems are tolerant of volatility, an “anti-fragile” system becomes stronger 
in the face of volatility. As external factors in the near future continue to increase volatility, anti-fragility is necessary in order to thrive in this 
context. 
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social infrastructure solution, such as intelligent mobility or AR/VR augmented gaming will position the fourth category, personal 
augmentation devices, to interact with all of these design envelopes to deliver a complete solution. 

The volume of data generated by IoT and cyber-physical systems is staggering. The sensor fusion platforms of a fleet of 1000 
conventional circa 2018 connected advanced driver-assistance systems (ADAS) vehicles generate four petabytes per day of data 
from their onboard sensors; that volume of data is equal to the total data volume handled at that time by Facebook (now Meta). 
While today the vast majority of in-vehicle data is discarded after it has been analyzed to provide immediate operational and 
safety benefits, efficiency breakthroughs allowing in situ analysis of raw data in IoT and CPS systems could provide extremely 
disruptive economic potential. What may evolve is the edge-to-cloud platform where today’s hub-and-spoke model is replaced 
by complex and dynamic topologies where cloud as-a-service consumption models are extended out from the data center towards 
successively smaller edge device meshes. As increasingly sophisticated computation infrastructure is distributed towards edge 
devices, a new class of latency-sensitive distributed massive data analytic applications could emerge, such as: intelligent mobility 
systems, 5G and successive communications networks and advanced augmented reality/virtual reality (AR/VR) gaming 
applications are all examples of application classes where millisecond or microsecond latencies on complex data analytic and 
data synthesis workloads may demand several tiers of computational capacity trading off space, weight, power and performance 
against latency.  

What admits data into economic activity is an information lifecycle — acquisition, assurance, analysis, insight and action—in 
which the analysis allows for timely action and for which the costs of analysis are outweighed by the benefits of action. Timeliness 
is the most important constraint, followed by the per cycle costs of analysis, yielding a time limited return on the investment of 
infrastructure and energy. At every scale of the design envelope from embedded IoT devices to exascale data centers, the 
numerator and denominator of this time-limited return on investment (ROI) can be affected by adoption of novel computational, 
memory and communication approaches from both the “More Moore” and “Beyond CMOS” roadmaps.  
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Figure SA-1    SWaP Design Centers across Infrastructure System Categories 

2.2. EMERGING TRENDS 
Artificial intelligence [3] continues to be a primary driver for the demand for growth in capabilities. Increasing levels of AI-
driven computation are being provisioned in the cloud, but many advantages exist to performing decision-making tasks in real 
time at the edge, so we expect personal augmentation systems, IoT edge devices, and cyber-physical systems to all include 
significant AI components.  

In all cases, this move towards pervasive AI creates new demands on data analytics, both in the training of AI/ML models and 
in the value of inference of those models on novel data sources. For time critical inferencing, this will mean the desire to host 
increasingly complex models in decreasingly small SWaP footprints, including in energy harvested environments. For use cases 
in which the subject matter, such as natural language processing, is under continuous evolution, the models will need to be 
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continually improved, which at a minimum creates the need for secure over the air updates but also may require distributed 
attestation and training when data sets are prevented either by law or by economics from being centralized for continuous re-
training. Since models are continuously derived from data, the provenance and security of the data flowing into these continuous 
integration and deployment regimes becomes paramount and must be reflected in security and attestation features down to the 
lowest level devices. 

We still expect augmented reality/virtual reality (AR/VR) to emerge as an important application area, however there are 
significant challenges in developing suitably compact interface devices that will begin to drive social acceptance of this degree 
of obvious augmentation in social spaces. A primary challenge in this domain remains the need to synthesize data streams 
captured locally with geographically and contextually related live and pre-distributed data streams, within the perceptual 
limitations of the users, which places speed-of-light limitations for low latency computational turnaround. In the meantime, a 
core driver for personal augmentation systems is instrumentation, with health monitoring, safety alerting and sensory 
enhancement all being significant value added features to devices in this category. 

The combination of low cost AR interfaces and low latency 5/6G networking, along with the mass exposure to remote working 
triggered by the pandemic open the path to many opportunities in telepresence. It is expected that advances in haptics, 
proprioception, and perhaps olfactory and gustatory transducers will be necessary to support this in comfort. 

Even as IoT and CPS both continue their massive build outs, security and data privacy concerns remain a significant problem.  

While we continue to describe IoT, CPS and Cloud as distinct classes, edge-to-cloud is emerging as a continuum, where a clear 
cycle of ‘collecting data at the edge, moving it to the cloud for training, then exporting models to the edge for low latency 
inferencing’ is becoming visible. Industry analysts have predicted that by 2025 as much as 75% of enterprise generated data will 
never be housed in a traditional data center—public or private. That data and the computational platforms that will provide access 
to and analysis of that data will be increasingly geographically dispersed into communications, power, transportation and building 
systems. These systems will host both data and computational resources proximal to that data, all of which will be consumable 
on demand, however this introduces significant challenges with respect to regulatory compliance. Security of both the data at 
rest in edge systems and the access to it will require both cryptographic protections as well as end-to-end zero trust attestation 
that will be continuous from edge to cloud. There are emerging conflicts appearing between regional data protection and AI 
regulations that risk turning some regions into ‘no-go zones’ for CPS systems due to the impossibility of complying with proposed 
regulation. It is likely that we will see a gradual transition from current ‘with-the-sun’ Cloud based workloads to much finer 
grained distributed, in-network computing, which will in turn introduce a broad range of new commercial and regulatory 
challenges. 

The radius of effective communication of data has become an increasing problem for Cloud and HPC systems. Modern data-
driven applications must operate on huge datasets that cannot be held in traditional types of memories, nor be addressed directly 
by conventional microprocessors. Data access times to block storage can be orders of magnitude longer than access to limited, 
high speed, local storage, so programmers must use more sophisticated programming techniques to manage delay — techniques 
that are often rendered useless by algorithms that do not have predictable locality, such as graph analytics on time varying graphs. 
The move to a chiplet based approach to integration of memory and I/O complexes into massive SoCs increases the capacity of 
low latency storage but as a result also relegates application specific accelerators to the block mode, high-latency off-chip regime, 
limiting the scalability of external acceleration. 

As the number of cores available within a package continues to increase, this class of problem expands into an ever wider 
application space, exposing a fundamental challenge for software developers who continue to have difficulty making the 
transition from classical, single-threaded processing to techniques that push the limitations defined in Amdahl’s Law. AI is likely 
to be the dominant driver for demand for new devices as conventional developers struggle to conceptualize the structures and 
architectures necessary to utilize the full performance of modern, conventional processors. 

The complex integration of cache, memory, and I/O blocks alongside the high core count in the current generation of processors 
continues to reveal the specter of multiple, advanced, persistent threat side-channel attacks which can be used to subvert the 
integrity of solutions.  

For dense rack, aisle and data center scale systems, the convergence of open memory-semantic fabrics and photonics are re-
shaping the moderate latency regime. When end-to-end latencies are between 300ns and 500ns, software designers can take 
advantage of relatively straightforward memory resource utilization mechanisms. Memory-semantic fabrics allow for the 
promotion of accelerators to first-class participants alongside general-purpose cores, allowing each to scale independently. 
Photonics allows data center distances to be traversed for the same energy cost as board to board distances and offers much 
greater physical design freedom and immunity from radio frequency interference (RFI) and emissions. When coupled with a 
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high-radix switch, photonics and memory-semantic fabrics could offer affordable exascale memories at the rack scale, memory 
latencies at the aisle scale and unified message passing at the data center scale and potentially beyond.  

2.2.1. CAMBRIAN EXPLOSION OF ARCHITECTURES 
As we move from 2D to 3D, we face a new inflection point represented by the opportunity for an explosion of new architectures 
that exploit the potential of stacking combinations of processing, memory, acceleration and I/O in denser and more efficient 
forms. This makes it difficult to project many elements of the roadmap forwards as we move from a period of familiar ‘general 
purpose computing’ devices to a proliferation of exploration into new ways to address current challenges. 

It is anticipated that there will be a period of searching for commercial advantage through the application of specialized 
architectures that offer niche benefits in specific market segments as a result of these new physical device capabilities and there 
is likely to be significant product differentiation before we loop around to a commercial situation where ‘modular IP within 
devices’ becomes as common as the current ‘modular devices on board’ model. 

There are likely to be two predictable trends in this period of innovation, however. Challenges currently experienced at a data 
center and HPC level will migrate down to a SoC scale as the problem becomes one of moving sufficient data at low enough 
latencies to fully utilize the number of cores available within a given device. Since this approach is only viable for certain classes 
of conventional software problems, we will also see multiple approaches to optimizing AI architectures which are a workload 
that can potentially benefit from intrinsic parallelization without the limitations inherent when requiring humans to design 
massively multithreaded architectures. 

2.2.2. FROM PROGRAMMING TO TRAINING AND INFERENCE 
This shift is driven by the combination of open source software frameworks and the rise of AI machine learning frameworks 
capable of the creation of very effective models based on statistical inference. Unsupervised learning techniques can trawl huge 
volumes of structured and unstructured data to find correlations independently of expert blind spots. Intelligence craves data and 
artificial intelligence is no exception. 

This creates a shift in the economic potential, from those who create code to those who create the data – without whom those 
code stacks are not useful. This also challenges us because the utility of these AI systems is limited – not by the ingenuity of the 
human programmers, but rather by the degree to which we have engineered systems to admit as much data as possible into the 
training regime as our physics and legal and security systems will allow. 

Practically, it is important to note that the creation of models represents only about 5% of the effort needed to commercialize an 
ML-based product — significant work is required to improve MLOps tooling and processes to cover all the challenges that exist 
in this emerging space, as detailed in the MLOps Roadmap [7]. 

2.2.3. FROM ONE PHYSICS TO MANY 
Through the first two eras (geometric and equivalent) of semiconductor scaling, there have been incredible advances in the high-
level aspects of computer science — algorithms, programming languages, storage and communications technologies. However, 
they were all fundamentally modulated by the CMOS transistor. Innovations were tested against the cost and performance 
improvements predicted by Moore’s law, and if they did not have the expected exponential growth characteristics they were not 
admitted. 

Even the obvious defects in security source to the conceptual basis of software models based on the 1960s threat landscapes 
failed to be fixed at the source because of the dominance of architectures with the tailwind of CMOS advances. 

Now, as CMOS advancement transitions from equivalent scaling to 3D Power scaling, novel computational approaches are 
increasingly competitive. The work that might spring most quickly to mind, e.g. quantum computing, along with cryogenic 
computing, has emerged as a particular focus area. However, it is not the only one - other areas include novel switching 
technologies, such as: 

• Faster, more efficient switches using carbon nanotubes or 2D materials in the switch channels; 

• Bringing computing resources to where the data is stored to reduce communication overhead with In-memory 
computing; 

• Using the rich and orthogonal properties of light to densify data representation as well as resonance and interference 
phenomena to implement complex mathematical operators in  silicon photonic computing; 

• Adiabatic and reversible computing that operate at the limits of thermodynamic information theory; 
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• Neuromorphic and brain-inspired computing that draw inspiration from biological systems but, much as with 
aerodynamics, use materials and energies not available to their biological analogs, and 

• Networks of organic and inorganic materials whose behavior calculates desirable functions at SWaP breakthroughs; as 
systems created in our own image that are designed primarily to host intellect that offer computation as a byproduct of 
intelligence. 

2.2.4. FROM DATA CENTERS TO DATA EVERYWHERE 
Today, 90% of information that the enterprise (public or private) cares about is housed in a data center. By its very name, it 
describes the actions that we have undertaken. In order for data to enter into economic activity, it must be centered, either because 
it was born there or it had to be transported there. But, with the advent of so many rich, high definition sensors housed in the ever 
proliferating number of personal augmentation devices, that ratio is expected to shift to as much as 75% of enterprise information 
will never being housed in a data center. 

It is not that the data center footprint will shrink, although it will continue to coalesce into clouds (both public and private), but 
that data will grow exponentially and disproportionately at the edge, in distributed social infrastructure, in edge devices (personal, 
public, and private - in other words, in all things intelligent). 

There are two forces that keep data at the edge—physics and law. The exponential growth of recorded data, which currently 
doubles every two years, means that even with the advent of 5G communications and massive communication backbones, there 
will never be enough bearer capacity to centralize all the data and even if there was, Einstein’s limit of the speed of light means 
that, at even metropolitan distances, our fastest communications will fail to meet the demands of autonomous vehicles or 5G 
communications. 

The second force is law. There is no global standard on privacy and the relation and responsibility of the individual to the larger 
society, which means that there will never be (at least in the foreseeable future) a single regulatory regime that spans the globe. 
Just like citizens and goods today, data needs to obey the imposition of boundaries. Will frameworks like GDPR2 continue to 
offer the protections that they strive to, when the vast majority of data will never be in a data center, and when the very term data 
center will be an oxymoron? 

The question to ask here is, “What will it take to admit as much data as possible into economic activity?”  The first answer is to 
exploit the asymmetry of the query versus the data to be analyzed. Instead of moving the data to the compute, move the compute 
to the data. This requires us to understand where we position potentially shared computation resources in proximity to the data—
in sensors, edge devices, distributed edge compute enclosures, autonomous vehicles. The second requirement to admit data to 
activity is security in the broadest sense—protection, trust, and control.  

• Protection: robust and energy-efficient cryptography ensures that query and response are demonstrably safe and correct.  

• Trust: provenance backed by secure supply chains, silicon roots of trust, and distributed ledger systems with low energy 
consensus functions ensures that every byte flowing into an enterprise can be audited.  

• Control: meta-data embedded unforgeably in the data ensures down to the byte and the access cycle all stakeholders in 
a computation can have their rights verified and protected. 

• Specific examples of these challenges are addressed in more detail in the Factory Integration chapter. 

2.2.5. FROM IMPERATIVE TO DECLARATIVE 
Imperative control systems rely on the enumeration of conditionals and responses, i.e. the classic if-then-else diamonds of 
flowcharts. The problem with imperative control is that the systems that we are creating—social, technical and economic—are 
too complex to be enumerated. No matter how much time we spend, we never can catch the corner cases, there are always 
exceptions and that means we need to guard band. Consequently, this means overheads and the inefficient use of resources, 
whether it is compute resource allocation, spectrum allocation or transportation capacity. 

Declarative management instead relies on systems that expose their operational state and control surfaces to goal seeking 
algorithms, such as reinforcement learning. Instead of enumerating all the “ifs” and “thens,” we can set goals to be achieved and 
let the system strive to maximize those goals. This approach has the added benefit that it does not suffer from the human bias of 
presupposition of causality preventing us from finding correlations hiding in plain sight. A declarative system using unsupervised 
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learning and autocorrelation could naively, blindly discover those correlations humans discount because it cannot presume it 
knows better. 

2.2.6. FROM SCARCE MEMORY TO ABUNDANCE 
A decade after Alan Turing created the mathematical theory of computation, John von Neumann was realizing that theory as an 
operational feat of engineering in his 1946 outline of EDVAC3. What von Neumann noted then, and what has remained true, is 
that the fundamental limiter to computation is how reliably and cheaply the memory can be made that can keep up with 
computation. 

Computation performance has always advanced faster than memory performance. But that is changing. As we enter the age of 
3D power scaling, memory is advancing faster than computation. The regular rows and columns of memory; the inherent shared, 
redundant, and repairable structures of memory, and the low power dissipation of memory mean that it can grow in the Z axis in 
a way that may never be possible for the high power and random logic of computation. 

With a structure of layers within a die, die within a module, and modules within a package, memories can scale. At that point, 
the switch to photonic communications can allow the scaling to continue at the enclosure, rack, aisle and data center scale. A 
second scalability of memory is scalability in energy. All of the novel memory technologies looking to replace the transistor 
memory, phase-change, resistive, spin torque, magnetic, all have a degree of persistence. They cost energy to write, they cost 
much less energy to read, but they cost no energy to maintain their contents. This is what can allow all of those zettabytes of data 
into unsupervised learning that we can now afford the energy to hold it all in memory. It also reintroduces a technology older 
than electronic computation—the lookup table. 

The table of numerical functions used to be the constant companion of the scientist or engineer. Energy was expended to calculate 
numbers one time, to write those numbers one time, and then those costs could be amortized in perpetuity. From the 1970s 
onwards, it has been cheaper to recalculate a result than to remember and recall it. But with persistent memories applied to 
immensely complex calculations like machine learning routines, incredible volumes of information can be distilled into insights 
that can be taken to the most energy-starved environments like interplanetary space. 

2.2.7. FROM HINDSIGHT TO FORESIGHT 
If we consider all of the information technology infrastructure of a Fortune 50 company, the alphabet soup of HR, CRM, ERP, 
GL systems, we will find a system of hindsight knowledge. That is because what represents the state function of the enterprise—
the operational data of all of those systems—is spread over petabytes in thousands of relational databases connected by hundreds 
of thousands of asynchronous updates, and much of that data would be copies. In order to evaluate the state function of the 
enterprise, we need to go through a ritual of reconciliation. We need to “close the books”, take a snapshot of all of those systems 
and painstakingly reconcile them. It is only then that a CEO/CFO executive leadership team can obtain a value of the state 
function of the enterprise, but it is at best days, most likely weeks old and represents a single moment in time, the instantaneous 
close of the period. 

If, instead, we were able to hold all of that operational state in a unified memory, evolving as a time varying graph, then we can 
achieve insight. The system function of the enterprise can be evaluated instantaneously and continuously, which means that we 
can also take its derivatives with respect to time and understand velocity and acceleration, gradient and curl. Now decision makers 
can ask any ad hoc question and the enterprise can answer. We have extended the concept of a digital twin from its origins in 
physical systems management and extended it to economic systems management. But what is more, we can unleash unsupervised 
learning and anomaly detection tools to audit and analyze the data, looking for the telltale signs of fraud or inefficiency. But we 
can also extend the preventative maintenance concepts to this new economic model. While machine learning gives us powerful 
statistical inference tools to find in data the patterns we’ve seen before, techniques like graphical inference and belief propagation 
allow us to predict behaviors we haven’t seen. 

From hindsight (“what has been happening around here”) we gain insight (“what is happening right now”) and then foresight 
(“what most likely to happen next”). 

2.2.8. FROM GENERAL PURPOSE TO BUILT-FOR-PURPOSE 
“log2(X)*24 Traditionally, that is how long a point innovation has had to survive in months.  If one expects an advantage of “X” 
times the state of the art today, then the log base 2 is how many doublings it will take to match. The Moore’s Law doubling 
period of 18~24 months has set the timeframe for innovation, especially when Dennard scaling was still available. Faster, cheaper 
to make and cheaper to use is a triple word score.  Unfortunately since Dennard scaling ended 15 years ago the straightforward 
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way to continue to reduce power and increase performance has been to make larger and larger die. We are at the point now of 
“dark silicon,” which means that we can make more transistors than we can deliver power to. If all the circuits on a die were 
active, the heat could not be removed fast enough and the chip would fail. Add one more law, Rock’s Law [4], the observation 
that each successive chip fab costs twice as much. “Moore – Dennard + Rock” is the recipe for consolidation at every level—the 
number of companies that can compete to the number of competitive architectures. 

But during this transition period between equivalent scaling and 3D power scaling, may be a period when the tide will shift back 
to the economic value of novel accelerator design.   

2.2.9. FROM PROPRIETARY TO OPEN 
The Open Source development and collaboration model has proven incredibly effective in software, not only in the complexity 
of systems that can be delivered, but also in the diversity of those who are enabled to participate. This creates the virtuous cycle 
where internationalization and localization occur as primary efforts coincident with innovation rather than after the fact, creating 
greater diversity of representation that again fuels greater inclusion in the economic and social benefits of innovation. 

The same guiding principles of open source software development are being extended down the stack. As an example, Gen-Z 
[5] is a memory-semantic fabric driven by an industry consortium applicable to ever-increasing levels of integration, from 
embedded to exascale. It has been open for review by the open source software community during the entire draft period and 
lowers the barrier to innovation for novel computational, memory, and communications devices. Regardless of whether it 
maximizes the potential of conventional CMOS or enables new physics to accelerate a particularly onerous computation, 
lowering the barrier to innovation and breaking the cycle of improvement solely through consolidation is the antidote for today’s 
technical monoculture. 

RISC-V [6] is an Instruction Set Architecture with an open governance model which fully embraces the open source development 
model in that it is freely extensible and licensable. This is a unique new proposition which simultaneously allows for a sustained 
core software development model that also allows innovation and customization that can be realized in custom or programmable 
silicon. When coupled with the emerging capacity of multiple foundries of relatively competitive logic processes, this again 
enfranchises an ever increasing number of innovators everywhere. 

2.2.10. FROM CENTRAL AUTHORITY TO DISTRIBUTED SYSTEMS 
Whether they are economic (cryptocurrency and public ledger), power (microgrids), or communications systems (mesh 
networks), distributed systems are more complex than centralized systems. But they are more sustainable, more available, more 
secure, and more equitable, which in turn makes them arguably more just. 

2.3. ARCHITECTURAL TRENDS 
2.3.1. INTERNET-OF-THINGS AND CYBER-PHYSICAL SYSTEMS 
This roadmap provides separate analysis of IoT edge (IoTe) devices and cyber-physical systems. While both types of systems 
connect computing devices to the physical world, and there is some overlap in the usage of these terms, we believe that 
considering them separately in this roadmap gives readers greater insight into the evolution of such systems. We can contrast 
CPS and IoT systems in several ways: 

• Cyber-physical systems perform real-time control—the core control functions operate automatically and without user 
intervention. IoT systems put more emphasis on sensing: they are also more likely to provide data summaries to humans 
who adjust system operation based on those summaries. 

• Many cyber-physical systems are, at their core, based on wired networks, although wireless sensors may be used in 
these systems. IoT systems are often deployed over larger areas and make more extensive use of wireless connections. 

• Cyber-physical systems tend to operate at higher sample rates than do IoT systems. We choose for convenience of 
discussion a boundary of 1 second between cyber-physical and IoT systems. IoT systems are often organized as event-
driven systems that either react to sensor activations or transmit data only when analysis indicates that a signal is of 
significant interest. 

2.3.2.  CONVERGENCE 
The huge volume of data generated by IoT and cyber-physical systems means that within the next five years the majority and 
then the vast majority (as much as 75% by one estimate) will never reach traditional data centers. Even with the advent of 
increasing bandwidth from next generation 5G/WiFi6 wireless interconnects, data growth will out strip transmission capacity. 
Both transmission energy and costs as well as regulatory, security, and privacy burdens will keep data in edge devices. As edge 
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systems become the majority of data resources, the desire to access them directly using the same cloud native APIs and continuous 
integration / continuous deployment software development methodologies will increasingly drive security and performance 
features and their enabling components into CPS and IoTe devices. This represents a convergence of the traditional operational 
technology (OT) components and methodology with their information technology (IT) equivalents. This represents a security 
and attestation challenge as many OT technology standards have been developed with lightweight security and little to no 
attestation mechanisms.  

For this reason and for the need to provide additional low latency computation, cloud-native enabled IT computational footprint 
ranging from rack scale down to ruggedized small single servers designed for extended environmental conditions will become 
gateways stitching together the OT and IT worlds.  

2.3.3. EDGE TO CLOUD SERVICE MESHES 
Whether public or private, cloud systems today offer compute, storage, networking infrastructure deployable via APIs, 
infrastructure as code. They also allow data and application resources to be deployed via APIs as well, usually up to the physical 
extent of an extended high-availability zone. The trend within a zone is for greater and greater levels of abstraction: data, 
applications, infrastructure are all abstracted as APIs and complex solutions are composed at scale and with high reliability and 
security without the developers having to understand, or have any access to, the lower level implementation details. This 
separation yields a degree of freedom on the cloud infrastructure designer to adapt novel technologies and to instrument the 
controls of these massive systems with AL/ML for operational efficiencies that human operators cannot achieve. However 
because of the lack of standards, compositing applications between zones of a single cloud provider, let alone across multiple 
providers, is extremely challenging. The disproportionate growth of data in edge systems coupled with the rise of low latency 
demanding applications such as AR/VR [3]may couple with the desire to compose solutions across the entire continuum of 
private to public cloud and edge to data center clouds in new constructs call service meshes. Service meshes may allow solution 
developers to balance latency, cost, reliability, security, privacy, availability and sustainability and re-introduce a counterforce 
to the consolidation of supply chain and lack of competition in current cloud data center providers. Key to service mesh 
construction is the adoption of ubiquitous zero trust endpoint security mechanisms rooted in physically uncloneable features in 
silicon and network independent name space resolution that can scale to a globally distributed edge to cloud ecosystem. 
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3. SYSTEM CATEGORY—CLOUD 
The term cloud refers to the engineering of data center scale computing operations—compute, storage, networking engineered 
for scale and for continuous resource redeployment and reconfiguration via APIs. Whether they are operated publicly or privately, 
they offer an on-demand, as-a-service consumption model. While they had their origins in web services; media streaming, 
shopping and commerce; they are increasingly broadening their applications base to big data for social networking, 
recommendations, and other purposes; precision medicine; training of AI systems, and high-performance scientific computation 
for science and industry.  

Cloud infrastructure has undergone several waves of optimization from its initial deployment of industry standard rack servers, 
storage and compute at data center scale.  Starting with commercial off-the-shelf (COTS) systems, cloud infrastructure progressed 
to custom loading of standard systems to purpose-built at the motherboard level. Today’s cloud-native compute, storage and 
networking infrastructure features bespoke processor designs, networking interface and switch ASICs, and workload specific 
accelerators via FPGAs or ASICs.  

The traditional differences between high-performance scientific computation and the first generations of web-scale applications 
are diminishing. Scientific computation traditionally emphasizes numerical algorithms, whereas cloud applications, in contrast, 
emphasize streaming for multimedia and transactions for commerce and other database applications. Now, with AI/machine 
learning (ML) integrated into so many applications, the demand for accelerated floating point computation is more universal and 
all applications are being dominated by operational and capital costs of data movements at scale. In all cases, the general trend 
is also to utilize this as-a-service consumption model to foster independence of the user from not only a particular piece of 
hardware infrastructure but from one particular architectural approach. This is a critical enabler for introduction of novel 
computational approaches from either the “More Moore” or “Beyond CMOS” roadmaps.  

3.1. MARKET DRIVERS 
Market drivers for the cloud include direct services (multimedia, shopping, shared experience), big data and data analysis (social 
network analysis, AI, smart cities, smart industry, precision medicine). We note that while these applications have differed from 
traditional scientific computing applications that emphasize numerical methods, this distinction is becoming less important as 
data movement and storage costs come to dominate both application domains.   

3.2. CHALLENGES AND OPPORTUNITIES 
The cloud data center, public or private, is no longer a homogeneous footprint of commercial off-the-shelf (COTS) compute, 
storage, and networking. The continued demand for efficiency, the breadth of traditional enterprise and high-performance 
computing (HPC) applications being migrated to hybrid public/private clouds as well as the new cloud-native applications are 
admitting bespoke silicon solutions in compute, storage and networking, analogous to the advantage of heterogeneous core types 
employed by embedded systems for many years. The huge scale of problems in social networking and AI, for example, means 
that algorithms run at memory speed and that multiple processors are required to compute. The radius of useful locality—the 
distance over which programmers can use data as effectively local—is an important metric. We expect the combination of 
increasingly integrated high-radix photonic switches and open memory-semantic fabrics to greatly enlarge useful locality radius 
and diversity of compute and memory endpoints over the next few years. Memory bandwidth is a constraint on both core 
performance and number of cores per socket. Three dimensional scaling of memory at every level—layers-in-die, dice-in-stack, 
stacks-in-package or stacks-on-ASIC will contribute greater local and fabric attached bandwidth. Thermal power dissipation 
continues to be an important limit, and may need to be addressed down to inter-die and intra-die cooling.  

Cloud systems present significant challenges. Heterogeneous architectures can provide more efficient computation of key 
functions. Novel memory systems, including stacked memories, offer high performance and lower power consumption. Advances 
in internal interconnect may create tipping points in system architecture.  

3.3. DESIGN ENVELOPE CONSIDERATIONS 
We face fundamental physical limits on our ability to deliver power into and extract heat out of industrial park-sized data centers. 
Thermal effects limit performance and may affect rack-level utilization. Power and thermal limitations have implications at all 
levels of the design hierarchy: building, rack, board, and chip. More significantly, continuing growth in demand for Cloud 
resources means that we are still on a trajectory that shows data center workloads consuming all of the world’s current electricity 
generating capacity, within the next 15 years. A reduction in transactional energy cost (J/bit) of at least three orders of magnitude 
is required in order to push that out by another decade. 
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3.3.1. TRENDS OF PROCESSORS FOR HIGH-END SYSTEMS 
The power consumption of processors  used for high-end systems such as cloud, servers, and high-performance computing ranges 
from tens of watt to a few hundreds of watt depending on the performance requirement of each processor chip and its cooling 
capacity. As these systems are composed of a cluster of multiple compute nodes, total system performance is usually a crucial 
metric rather than a single processor performance. Since the total system performance depends on the number of installed nodes 
which is mainly limited by total power and/or cooling budget of a data center facility, power efficiency, sometimes measured by 
performance per watt, is used to be a critical factor of the processors. 

These types of processors have been and continue to be evolved in a different way to match with different workload 
characteristics: that needs lower latency, which needs throughput, and that needs compute capability. We assume three classes 
of high-end processors4. 

1. Latency sensitive processors: these processors are optimized for lowering any aspect of latency, usually prioritizing 
single thread performance. They have a rich out-of-order execution resources with advanced branch prediction and 
cache prefetching mechanisms, a deeper cache hierarchy with relatively larger a last level cache, and large main memory 
with standard DDR technologies to accommodate a large dataset. Typical workload of cloud and server systems with 
these processors includes network services, database processing, and graph processing. General purpose server class 
processors such as Intel Xeon, AMD EPYC, and Amazon Graviton are representative examples of these processors. 

2. Throughput oriented processors: these processors are specially optimized for compute and data movement bandwidth, 
prioritizing parallel processing efficiency. They emphasize data level, thread level, and core level parallelism of the 
workload to achieve higher performance. In order to integrate more number of compute units, out-of-order execution 
resources and memory hierarchy are simplified. Integrated memory modules with high bandwidth memory (HBM) or 
GDDR are usually used to increase memory to processor bandwidth. Typical workloads of this type of processors are 
graphics and supercomputing applications. Representative examples of these processors are GPUs such as NVIDIA 
A100, A64FX used in Supercomputer Fugaku, and vector processors such as SX-Aurora Tsubasa. 

3.  Compute centric processors: these processors are specially designed for achieving very high compute throughput with 
less emphasis on main memory bandwidth. They usually have a large SRAM on-chip memory assuming dataset of the 
current workload fits in the on-chip memory. They can achieve very high compute density utilizing high bandwidth data 
supply from on-chip SRAM to functional units. Deep learning and inference applications are the main target of this type 
of processors. Representative examples of these processors include Cerebras WSE CS-2, Tesla D1, Esperanto ET, 
Graphcore Colossus MK2 GC200 IPU, Groq TSP, SambaNova SN10. 

We forecast the technological trend of the latency sensitive processors and throughput oriented processors as shown in Table 
SA-2 and Table SA-3.  In the forecast, we assume multiple dies are tightly connected in a package with chiplet technologies.   

  

 
4 This classification is originally from NGACI white paper (https://sites.google.com/view/ngaci/home) 

https://sites.google.com/view/ngaci/home
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Table SA-2    Technology Trends of Latency Sensitive Processors 

 2019 2022 2024 2026 2028 2030 2032 2034 

# chiplet per socket 4-8 8 8 8 8-16 8-16 8-16 16-20 

# core per chiplet 8 8 8-12 8-16 8-16 16-24 16-32 16-32 

# core per socket (max) 64 64 96 128 256 384 512 640 

Processor base frequency (GHz) 
(for multiple cores together) 

2.2-3.0 2.5-3.3 2.8-3.4 3.0-3.5 3.2-3.6 3.4-3.7 3.4-3.7 3.4-3.7 

Core total vector length 1024 1024 1024 1024 2048 2048 2048 2048 

L1 data cache size (in KB) 36 40 40 42 42 44 44 44 

L1 instruction cache size (in KB) 48 96 96 128 128 160 160 160 

L2 cache size (in MB) 1 1.5 2 2 2 2.5 2.5 2.5 

LLC cache size (in MB) 64-128 64-800 128-
1024 

256-
1536 

256-
2048 

512-
4096 

512-
4096 

512-
4096 

# of DDR channels 8 
(DDR4) 

12 
 (DDR4) 

12 
(DDR5) 

12 
(DDR5) 

16 
(DDR5) 

16 
(DDR6) 

16 
(DDR6) 

16 
(DDR6) 

DDR bandwidth (TB/s) 0.20 0.31 0.61 0.76 1.02 1.1 1.2 1.2 

DDR size per socket  (in TB) 1.0 3.0 4.5 6.0 8.0 10.0 12.0 12.0 

Socket max TDP (Watts) 280 300 400 450 600 600 700 700 

L1=level 1 cache; LLC=last-level cache; Fabric=PCIe or new fabric (e.g. CXL); TDP=total power dissipation. 
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Table SA-3    Technology Trends of Throughput Oriented Processors 

  2019 2022 2024 2026 2028 2030 2032 2034 

# chiplet per socket 1 1 4 8-16 8-16 8-16 8-16 8-20 

# SM core per chiplet 108 132 36 36 42 48 54 54 

# core per socket (max) 108 132 144 288-576 336-672 384-768 432-864 432-1080 

Processor base frequency 
(GHz) 
(for multiple cores together) 

1.2 1.4 1.4 1.4 1.6 1.6 1.6 1.6 

# of HBM ports 6 
(HBM2) 

6 
(HBM3) 

8 
(HBM3) 

8 
(HBM3) 

8 
(HBM4) 

10 
(HBM4) 

10 
(HBM4) 

10 
(HBM4) 

HBM bandwidth (TB/s) 1.6 3 4 4 6.6 8 10 10 

HBM size per socket  (in GB) 40 80 256 512 800 1024 1024 1024 

Socket max TDP (Watts) 400 400-700 400-700 440-700 500-700 500-700 500-700 500-700 

 
 

3.3.2. ACCELERATION TECHNOLOGY 
3.3.2.1. GPU ACCELERATORS 
The performance of HPC/DC systems is increasingly dependent on accelerators, such as GPUs, TPUs and AI processors, rather 
than general-purpose CPUs. It is therefore necessary to project a roadmap of accelerators with their characteristics and 
performance, in order to project architectures of future systems in the HPC and DC categories. 

Here, we project technically feasible performance metrics of future accelerators in the cloud, DC and HPC domains, assuming 
that we will pursue computational performance to any extent possible in the category. We target high-end GPU and AI processors 
consuming 100W or more. In this projection, we predict the peak performance of an accelerator chip based on the same 
architecture as that of a baseline product in 2021. We assume that the peak performance is restricted by one of the scaling of 
transistor density, scaling the external memory bandwidth, and scaling of transistor’s power consumption. Table SA-4 shows the 
estimated performances of high-end GPU with HBM5 memories, for operations of FP64, FP32, BF166, FP8, and INT8. 

  

 
5  High Bandwidth Memory (JEDEC standard) 
6  Brain floating-point format: number encoding format occupying 16 bits, equivalent to a standard single-precision floating-point value with 
a truncated mantissa field. 
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Table SA-4    Performance Trends in High-End GPUs with High Bandwidth Memory (HBM) 
 2022 2024 2026 2028 2030 2032 2034 

FP64 [TFLOPS] 30 32 40 42 44 47 48 

FP32 [TFLOPS] 60 70 80 84 89 94 96 

FP16/BF16 [TFLOPS] 2000 2290 2640 2800 2960 3120 3200 

FP16 [TFLOPS] 2000 2290 2640 2800 2960 3120 3200 

INT8 [TOPS] 4000 4570 5280 5600 5920 6240 6400 

HBM bandwidth (TB/s) 3 4 5 6.6 8 8 8 

 
3.3.2.2. FIELD PROGRAMMABLE GATE ARRAYS (FPGA) 
Programmable Logic Devices (PLDs) have developed from glue logic to the current Field Programmable Gate Array (FPGA). 
As the awareness of programmability and customizability grows, FPGAs have attracted more and more attention and are entering 
wider markets such as communication, storage, data center, sensing, and personal augmentation devices. Thus, the FPGA market 
has registered a compound average growth rate (CGAR) of around 4% from the beginning of the 21st century. FPGAs have 
evolved as custom-computing logic and are used in the replacement of glue logic and specialized computing, including rapid 
prototyping. In addition, high-performance computing is targeted because advanced semiconductor manufacturing has expanded 
the variety of FPGA architectures in this decade. The tangible examples in high performance and large-scale computing are Big 
Data, financial applications, high-frequency trading, network switching, large-scale AI applications, high-speed and low-latency 
large volume storage, etc. 

The SA-4.5.2 shows the trends of high-performance FPGAs expect HBM and communication based on many parallel I/O pins. 
However, this will be affected by multi-die packaging technology. Future system design with HBM FPGAs may face a critical 
bottleneck because die-to-die interconnections strongly restrict the circuit design.  

Key metrics include primary logic element (LUT), digital signal processing unit (DSP), on-chip distributed SRAM block 
(BRAM), off-chip RAM banks (HBM stacks) and the bandwidth (HBM bandwidth), and TDP (Thermal Design Power). 

Table SA-5    Trends for FPGAs in High Performance Applications 

 2022 2024 2026 2028 2030 2032 2034 

#LUT (M) 8 12 12 17 17 22 22 

#DSP (K) 10 15 15 22 22 30 30 

BRAM size (Gb) 1 1.5 1.5 2.2 2.2 3 3 

HBM stacks 2 2 2 4 4 4 4 

HBM bandwidth (TB/s) 0.8 1.6 3.3 6.6 6.6 13.1 13.1 

TDP (Watts) 133 126 179 174 174 180 180 
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3.4. METRICS FOR CLOUD PROCESSORS 
Key metrics for cloud systems include number of cores or core equivalents per socket (cores may include any type of computational element, including central 
processing units (CPUs), graphics processing units (GPUs), or accelerators), base frequency, vector length, cache size, memory characteristics [double data rate (DDR), 
high-bandwidth memory (HBM)], PCI-e connectivity, and socket thermal power dissipation. L1 = level 1 cache; LLC = last-level cache; TDP = total power dissipation.  

Table SA-6    System Category Cloud—Key Processor Metrics 

  2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 

# cores per socket 64 64 96 96 128 128 256 256 384 384 512 512 640 

Processor base frequency 2.5-3.3 2.5-3.3 2.8-3.4 2.8-3.4 3.0-3.5 3.0-3.5 3.2-3.6 3.2-3.6 3.4-3.7 3.4-3.7 3.4-3.7 3.4-3.7 3.4-3.7 

Core vector length 1024 1024 1024 2048 1024 1024 2048 2048 2048 2048 2048 2048 2048 

FLOPS per socket (TFLOPS) 5.1 5.1 8.6 8.6 12.3 12.3 52.4 52.4 83.6 83.6 111.4 111.4 139.3 

HBM ports 6 6 6 6 6 6 6 6 6 6 6 6 6 

HBM bandwidth (TB/s) 6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 

Fabric lanes 88 96 104 112 120 128 136 144 152 152 152 152 152 

Per lane (GT/s) 56 56 56 56 56 56 56 56 100 100 100 100 100 

Socket TDP (Watts) 300 300 400 400 450 450 600 600 600 600 700 700 700 

L1 = level 1 cache; LLC = last-level cache; Fabric = PCIe or new accelerator fabric (CXL/Gen-Z/openCAPI/CCIX); TDP = total power dissipation.
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4. SYSTEM CATEGORY—PERSONAL AUGMENTATION 
Personal augmentation devices integrate computation, communication, storage, capture and display, and sensing. These systems 
are highly constrained in both form factor and energy consumption. As a result, their internal architectures tend to be 
heterogeneous. Cores in modern personal augmentation units include: multi-size multi-core CPUs, GPUs, video encode and 
decode, speech processing, position and navigation, sensor processing, display processing, computer vision, deep learning, 
storage, security, and power and thermal management. 

4.1. MARKET DRIVERS 
Personal augmentation devices provide multiple use cases: telephony and video telephony; multimedia viewing; photography 
and videography; email and electronic communication; positioning and mapping, authenticated financial transactions, health and 
fitness monitoring, personal safety and environmental warning. Current and upcoming market drivers include: gaming and video 
applications; productivity applications; social networking; augmented reality and context-aware applications, and mobile 
commerce. Personal augmentation devices already make use of AI technologies such as personal assistants. Deployment of AI 
on and through personal augmentation devices will accelerate.   

4.2. CHALLENGES AND OPPORTUNITIES 
Personal augmentation systems present several challenges for system designers. Multimedia viewing, such as movies and live 
TV, have driven the specifications of smartphone systems for many years. We have now reached many of the limits of human 
perception, so increases in requirements on display resolution and other parameters will be limited in the future based on 
multimedia needs. Content delivery networks (CDNs) pre-positioning relevant content globally addresses the need for low-
latency unidirectional flow from content providers to consumers. However, augmented reality will motivate the need for 
advanced specifications for both input and output in personal augmentation devices and promote the development of much more 
complex interactive topologies than today’s CDNs. Future ad hoc mobile mesh communities focused on live events, AR/VR 
multiparty gaming, or cooperative AR work environments will connect personal device to personal device and link to low-
latency, distributed-edge compute infrastructure as well as multi-cloud global infrastructure. To date, personal augmentation 
device buyers demand frequent, yearly product refreshes, but this trend may not be sustainable. This fast refresh rate has 
influenced design methodologies to provide rapid silicon design cycles; if it attenuates then the push towards differentiation in 
the connected infrastructure may be the next location for innovation in devices and systems. Financial transactions are now not 
only routinely performed using personal augmentation devices, they are preferentially performed on the devices due to the ability 
to add biometric and geographic identity confirmation. We expect this trend to grow, particularly in developing nations, where 
financial technology will leapfrog.  

4.3. DESIGN ENVELOPE CONSIDERATIONS 
Users want long battery life even with active use cases. However, battery chemistry improves slowly. Furthermore, given the 
high energy densities of modern batteries, we may see regulatory limits on battery capacity and the uses of high-capacity batteries. 
The high performance of modern personal augmentation devices may create thermal challenges that must be considered to ensure 
a comfortable experience for users. 

4.3.1. TRENDS OF PROCESSORS FOR PERSONAL AUGMENTATION 
The processors used for personal augmentation systems need high processing performance, but cannot be equipped with cooling 
systems like heat sinks or cooling fans. The performance is restricted by power consumption limits due to thermal dissipation. 
Heat, generated by chips, must be radiated to ambient air via conduction through packaging. The power consumption of this type 
of processor must be in the range from 100mW to 10W. We assume that the power consumption limits of processors remain 
constant to forecast the trends. “DMIPS7” is used as an indicator of the performance of processors since ''DMIPS” or 
''DMIPS/clock frequency” have been published for many CPU cores, so it is easy to forecast for long term trends. 

We forecast the trends by estimating DMIPS/Hz/Core of benchmark CPU, by extrapolating the trend observed before 2020 until 
2034     , and estimate DMIPS trend for SoCs used in personal augmentation applications.  Our assumptions are that, throughout 
this decade, (i) the number of Cores will increase from 8 to16 and to 32, and (ii) the clock frequency will be increased from 2.8 
GHz to 3.0 GHz, 3.2 GHz, and to 3.4 GHz. 

 
7  Dhrystone MIPS (millions of instructions per second measured during the execution of Dhrystone benchmark) 
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Table SA-7    Trends of SoC processors for Personal Augmentation Devices 
 2022 2024 2026 2028 2030 2032 2034 

Core performance 
(DMIPS/MHz/Core) 

18.5 20.8 23.2 25.5 27.8 30.1 32.4 

Number of Cores 8 16 16 16 32 32 32 

Maximum frequency (GHz) 2.8 3.0 3.2 3.2 3.4 3.4 3.4 

Performance (kDMIPS) 421 1,000 1,186 1,304 3,025 3,277 3,530 

Process node (nm) 3 3 2.1 1.5 1.5 1.0 eq 0.7 eq 
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4.4. METRICS FOR PERSONAL AUGMENTATION PROCESSORS 
The table SA-8 shows requirements for personal augmentation devices. Key metrics include CPU and GPU compute power, communication bandwidth, camera count, 
and sensor count. Augmented reality applications motivate more cameras as well as other types of sensors. 

Table SA-8    Personal Augmentation Technology Requirements 
 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 

 # CPU cores 8 8 16 16 16 24 24 24 32 32 32 32 32 

 Core performance 
(DMPIS/MHz/Core) 18.5 18.5 2.8 2.8 23.3 23.3 25.5 25.5 27.8 27.8 30.1 30.1 32.4 

 # GPU cores 32 64 64 64 128 128 128 256 256 256 512 512 512 

 Maximum frequency 
(GHz) 2.8 2.8 3.0 3.0 3.2 3.2 3.2 3.2 3.4 3.4 3.4 3.4 3.4 

Number of cameras 4 4 4 6 6 6 8 8 8 8 8 8 8 

Camera resolution (MP) 18 18 20 20 20 24 24 24 24 24 24 24 24 

 Number of sensors 10 10 12 12 12 12 12 16 16 16 16 16 16 

 5G/6G Max data rate 
(Gb/s) 5 7 7 7 10 10 10 20 20 20 50 50 50 

 Wi-Fi Max data rate 
(Gb/s) 30 30 30 30 30 30 30 30 30 30 50 50 50 

 Board power (mW) 5900 6190 6500 6830 7170 7530 7900 8300 8715 9150 9610 10090 10590 
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5. SYSTEM CATEGORY—INTERNET-OF-THINGS EDGE (IOTE) DEVICES 
An IoT edge (IoTe) device is a wireless device with computation, sensing, communication, and possibly storage. The device may 
include one or more CPUs, memory, non-volatile storage, communication, security, and power management. It may be line 
powered, battery powered or utilize energy harvesting.  

5.1. MARKET DRIVERS 
Market drivers for IoT include the following: smart cities; smart homes and buildings; medical devices; health and lifestyle; 
manufacturing and logistics, and agriculture.   

5.2. CHALLENGES AND OPPORTUNITIES 
IoTe devices must satisfy several stringent requirements. They must consume small amounts of energy for sensing, computation, 
security, and communication. They must be designed to operate with strong limits on their available bandwidth to the cloud.  

Many IoT devices will include AI capabilities; these capabilities may or may not include online supervision or unsupervised 
learning. These AI capabilities must be provided at very low energy levels. A variety of AI-enabled products have been 
introduced. Several AI technologies may contribute to the growth of AI in IoTe devices—convolutional neural networks; 
neuromorphic learning; stochastic computing. 

IoT edge devices must be designed to be secure, safe, and provide privacy for their operations. 

5.3. DESIGN ENVELOPE CONSIDERATIONS 
IoTe must be designed to provide low total cost of ownership. Given the high cost of pulling wires to IoT devices, as well as the 
cost of changing coin cell batteries, this means both wireless communication and energy harvesting. Many IoTe devices operate 
in harsh physical environments, putting additional strain on their thermal management systems. 

5.3.1. TRENDS OF PROCESSORS FOR INTERNET-OF-THINGS EDGE (IOTE) 
The processors in this category are used for Internet-of-Things edge (IoTe) systems. From the viewpoint of power consumption, 
IoTe systems are classified into two types: standard systems with power consumption of 10 mW or less, and low power systems 
with power consumption of 1 mW or less. In IoTe, acquisition of sensing data is a functional requirement that is a "feature" 
explicitly requested by a client. Power saving, however, is a non-functional requirement that refers to all quality-related items 
such as usability, performance, scalability, and security. Device metrics are related to the elimination of the bottlenecks of these 
functional and non-functional requirements. 

An IoTe system that acquires sensing data consists of sensor nodes that collect data, gateways that aggregate those data, clouds 
that convert information into big data, and display devices showing analysis results. The main bottleneck in the utilization of 
IoTe is the power required to operate the sensor node. Due to power constraints on the sensor node, the number of semiconductor 
devices, such as multi-cores and accelerators, is limited. In a low-power IoTe system, the number of CPUs and sensors is limited 
to the minimum number. The power consumption increases with data-measurement frequency (samples/second), data size 
(Bytes), and communication interval (transfers/second). In cases where wired power supply is difficult, wireless sensor nodes 
are used, but it is essential to reduce the frequency of wireless communication and power consumption of IoTe terminals.  

A wireless sensor node mainly consists of a power-supply unit, sensor unit, micro controller unit (MCU) unit, and wireless unit. 
A battery and photovoltaic power-generation device and/or energy harvesting device are mounted on the power-supply unit 
together with a power-supply stabilizing circuit. In cases where the performance of the installed battery or energy harvester is 
insufficient, the range of IoTe utilization is limited. Therefore, the scope of IoTe application will be expanded by improving the 
performance of batteries and energy harvesters. The device metrics for the power-supply section of IoTe are improved battery 
life (B), battery hybridization (B+H) and energy harvesting (H), multimodal harvesting (H1 + H2), and zero battery harvesting. 

Various cameras, and sensors for vibrations, currents, infrared rays, or chemicals are integrated in the sensor node. As the types 
of sensors increase, so the use cases of IoTe will expand. Hence, the number of sensors per device will increase over time in a 
standard IoTe system and smartphones with power consumption of 10 mW or more. In a low-power IoTe system however, low-
power operation is prioritized, so the number of sensors is limited to one. 

The MCU executes digital processing of sensing data. In a standard IoTe system, the number of CPUs used in the MCU will 
increase over time. However, the number of CPUs in a wireless sensor node is smaller than that in a wired sensor node. In a low-
power IoTe system therefore, as mentioned earlier, the number of CPUs will remain limited to one over time. The MCU is 
required to improve the frequency that meets the data-processing requirements of IoT but also reduce the leakage current that 
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leads to the improvement of battery life. Conventional technologies, even with multi-threshold voltages and power-gating 
approaches, will not be sufficient. Therefore, it is expected that the application of SOI (Silicon on Insulator) devices (to enable 
dynamic body-biasing and flexible means of equating device performance with leakage requirements) and non-volatile memory 
(to enable aggressive power-down strategies and fast wakeup times, as well as novel non-volatile logic and In-Memory-
Computing designs) will expand over time as an option to reduce leakage current.  

A wireless sensor node is equipped with a wireless semiconductor chip used for communication with the gateway. In IoTe, WiFi, 
LPWA, etc. are selected as low-power wireless specifications, and communication capacity is reduced under Tx/Rx energy 
(μW/bit) and constant power consumption. Because of cost priority, devices that are several generations behind are often used 
instead of cutting-edge devices. It is necessary to design a wireless sensor node so that the power consumption is equal to or less 
than the desired value. For that purpose, the current profile and energy consumption during operation of the entire wireless sensor 
node must be quantitatively evaluated through experiments. 
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5.4. METRICS 
Key metrics for IoT include CPU count and frequency; energy source (battery or energy harvesting); communication energy per bit; battery operation lifetime; deep 
suspend current, and number of sensors. Tx = transmit, Rx = receive. 

Table SA-9    Internet-of-things Edge Technology Requirements 
 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 

CPUs per device 2 4 4 4 4 6 6 6 8 8 8 8 8 

Maximum CPU frequency 
(MHz) 310 315 320 325 330 335 340 346 351 360 363 369 375 

Energy source (battery, 
harvesting) B+H B+H B+H B+H B+H B+H B+H B+H B+H B+H B+H B+H B+H 

Tx/Rx power/bit (μW/bit) 0.085 0.057 0.038 0.025 0.017 0.011 0.0075 0.0050 0.0033 0.0022 0.0015 0.0015 0.0015 

Battery operation lifetime 
(months) 9 9 9 12 12 12 12 18 18 18 18 18 18 

Deep suspend current (nA) 32 27 23 20 17 14 12 10 9 8 7 7 7 

Sensors per device 8 8 12 12 12 16 16 16 16 16 16 16 16 
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6. SYSTEM CATEGORY—CYBER-PHYSICAL SYSTEMS 
Cyber-physical systems are networked control systems. These distributed computing systems perform real-time computations to 
sense, control, and actuate a physical system. Many cyber-physical systems are safety-critical. They interface to the systems they 
control via both standard and proprietary interconnects broadly known as operational technology (OT), where ruggedness, 
extended environmental capabilities, low-cost have historically been paramount over considerations such as security and 
attestation. As these systems are increasingly connected edge-to-cloud, this will present an increasing attack surface, either for 
data theft, false signal injection, systems commandeering, or as a back door into the IT domain.  

6.1. MARKET DRIVERS 
Market drivers include automotive and aerospace vehicles, autonomous vehicles / UAVs, medical systems and implantable 
devices, and industrial control.   

Cyber-physical systems may make use of wireless interconnects, but critical functions are generally performed on a wired 
network. While an existing physical layer, such as Ethernet, may be used for the fabric, the communication protocol is designed 
for real-time operation. Time-triggered architectures, for example, divide bus access into time slots; hard real-time functions are 
assigned fixed slots while soft-real functions may arbitrate for access to shared time slots. 

6.2. CHALLENGES AND OPPORTUNITIES 
Several challenges present themselves to cyber-physical system designers. Cyber-physical systems must be highly reliable at all 
levels of the design hierarchy. Physical security and isolation have traditionally been part of the design of these systems, but that 
is becoming a greater challenge as edge to cloud connected design becomes the dominant methodology. Wireless sensors are 
increasingly used in cyber-physical systems to reduce installation effort and weight; the challenging temperature and 
electromagnetic interference environments of the physical plants require much stronger component requirements than is the case 
for typical consumer applications. 

Security and safety are critical for cyber-physical systems. Although security and safety have traditionally been handled 
separately in the design process, cyber-physical systems cause interactions that require safety and security to be handled 
holistically. Traditional safety practices are sufficient to address security concerns; similarly, computer security approaches are 
inadequate to handle many safety issues. Privacy is also a key concern for the data generated by cyber-physical systems. We 
expect the use of AI for cyber-physical systems to continue to escalate, and this again challenges the traditional isolation for 
safety and security of these systems as either increasingly complex compute must be incorporated into the edge endpoints for in 
situ inference and anomalous data       must flow out      from the edge to cloud training infrastructure, either distributed or 
centralized.  

The sensor fusion platform of today’s connected automobiles are capable of terabytes per day of raw data, almost all of which is 
utilized only over the very short term to optimize passenger safety and vehicle operations. But, like many of today’s isolated 
CPS platforms, the potential for the sensor data from cyber-physical systems for big data applications and emerging products 
such as automated diagnosis and repair dispatch or cooperative sensing is huge. The interaction between CPS, IoT, and edge to 
cloud infrastructure presents an ongoing challenge and opportunity. 

Practical applications of machine learning represent highly asymmetric demands upon resources as very large volumes of data 
must be aggregated centrally for training, requiring very high bandwidth data pathways, but typical applications for inferencing 
with these models need very low latency operation in the field, requiring a very dense and energy efficient processing capability 
close to real time data sources. 

It is anticipated that at least a two orders of magnitude increase in performance will be necessary to properly fulfill immediate 
aspirations in this segment, with a longer term goal being to meeting and exceed the characteristics of the human brain: greater 
than 1018 FLOPS in a volume of around 1 liter, with a mass of around 1kilogram and a power consumption of around 100W.  

6.3. DESIGN ENVELOPE CONSIDERATIONS 
Some cyber-physical systems, such as vehicles, are powered by generators. In these systems, available power for the 
computational engine is determined by the capabilities of the generator and the electrical load presented by the physical plant. 
Many cyber-physical systems present extreme temperature, electromagnetic and vibrational environments in which the 
electronics must operate. 
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6.3.1. TRENDS OF PROCESSORS FOR CPS 
The processors used as MCU's for ADAS (Advanced Driver Assistance Systems) or automotive infotainment systems, such as 
Level-2 ADAS ECU or Car Navigation systems need high processing performance, but often cannot be equipped with effective 
cooling systems like deep heat sinks or strong cooling fans. The power consumption must be in the range from 100mW to 10W.  
The processors targeted to Fully Autonomous Driving systems belong to the different category.  We assume that the power 
consumption limits of processors remain constant, and “DMIPS8” is used as an indicator of the performance of processors since 
''DMIPS” or ''DMIPS/clock frequency” have been published for many CPU cores, so it is easy to forecast for long term trends. 
We forecast the trends by estimating DMIPS/Hz/Core of target CPU, by extrapolating the trend observed before 2020 until 2034. 
And we assume that throughout this decade, CPU cores used for personal augmentation applications will be applied to automotive 
applications 5 years later, with lower clock frequency, and the number of cores will increase from 8 to 16, and the clock frequency 
will be increased from 1.0 GHz to 1.2 GHz. 

Table SA-10    Trends of MCU processors for ADAS 
 2022 2024 2026 2028 2030 2032 2034 

Core performance 
(DMIPS/MHz/Core) 

9.5 15.1 17.3 19.7 22.0 24.3 26.6 

Number of Cores 8 8 8 8 16 16 32 

Maximum frequency (GHz) 1 1 1 1.2 1.2 1.2 1.2 

Performance (kDMIPS) 76 121 139 189 422 467 1,023 

Process node (nm) 10 7 5 3 2.1 2.1 1.5 

 

The processors used for embedded systems operate on a commercial power source but consume as little power as possible. On-
chip flash memory microcomputers in this category are used with commercial power supplies, and may operate for several weeks 
with a large capacity battery. The power consumption is usually in the range of 10mW to 100mW. Since microcomputers are 
used in embedded devices, the performance of the processor itself does not lead to product value, so there is a tendency to select 
one with sufficient performance to establish an application from the viewpoint of power consumption and cost. Therefore, state-
of-the-art processes are not always used. Power consumption is adjusted by scaling the operating frequency. 

For embedded systems, on-chip non-volatile memory (e.g. flash, MRAM, RRAM, FeRAM) is required. The process (technology 
node) is determined by cost. Even if emerging memory is included, NVM scaling laws are harder to predict. Utilized processes 
are limited to 65, 55, and 40 nm. Recently, an on-chip flash memory using a 28 nm process was introduced. In this analysis, even 
considering the scenario of a future disruptive NVM technology, the limit of miniaturization will not go beyond the 14 nm process 
in the next 10 years. This is several generations behind the current personal augmentation processor process. Taking this scenario, 
it is projected that the category of embedded processors will not evolve significantly. 

6.3.2. CPS DEVICES 
Cyber-physical systems (CPS) should be considered with particular attention in future system architectures. This section 
considers the device requirements for CPS.  

CPS constantly rotates the sense / think / act loop and handles a large amount of data. Ultimately, power saving and scalability 
of 10,000 times or more are required. A large number of leading-edge semiconductor devices are used in advance in the CPS 
system. For energy-saving, neuromorphic computing is applied using a model inspired by the fact that the human brain requires 
less than 0.0001% of the amount of energy consumed by a supercomputer. The neuromorphic semiconductor chips will evolve 
from the original digital type to the analog type. Furthermore, in order to increase the scalability, attention is focused on the 
annealing technology for the overall optimization of supply chains, social infrastructure, and smart cities. Annealing chips for 
non-silicon quantum computing and silicon quantum computing will be developed in parallel, and the range of applications for 
scheduling like personnel shift, and optimization of mobility operation management will be expanded. 3D chiplet technology 
that integrates them heterogeneously at the package level will be developed for clouds and edges used in CPS. 

CPS is applied to various applications such as digital transformation (DX), green transformation (GT), Well-being, FinTech, and 
supply-chain management (SCM), starting with the integration of indirect operations such as accounting, procurement, and 
personnel. In the physical space, evolution occurs in the collection of information not only from things but also people. In 

 
8  Dhrystone MIPS (millions of instructions per second measured during the execution of Dhrystone benchmark) 
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cyberspace, the evolution to the metaverse will occur. Some of the computing for CPS can be done by simply improving software 
processing. However, to achieve mission-critical control that requires real-time performance and high position accuracy, the 
number of cases in which new hardware is required will increase over time. 

CPS can be regarded as systems of systems (SoS), i.e. combinations of various systems. Focusing on power consumption, they 
consist of the low-power and standard IoTe systems, semiconductor chips of 100 mW to 10 W or less, and HPC (High 
Performance Computing) of 10 W or more. Therefore, it is necessary to consider the power-reduction requirements of various 
devices and systems in an integrated manner. If personal augmentation devices like wearables and implantable devices are used 
in metaverse, they may be components of CPS. In a device that comes into contact with a person, there is an additional 
requirement that the power consumption be 5 W or less to suppress the generated heat that cannot be air-cooled. 

In CPS, it is important to assume distributed computing through cooperation between the edge and cloud as the main solution to 
suppress the power explosion caused by the increase in information. To streamline distributed computing, OT and IoTe devices 
are placed in the physical space, which will be connected to clouds and HPCs by wired or 5G/6G wireless networks. 

The main device metrics required to enable the diversified edge-cloud cooperation in CPS are the number of devices (CPUs, 
GPUs, and FPGAs) and cores per device. The number of devices is defined as the number used for the assumed SoS. CPUs per 
device is defined as the number of CPUs used in the SoC (System of Chips).  

The number of dedicated CPUs and dedicated accelerators customized for individual applications is also an important metric. 
Examples where these are used are 4K/8K and point cloud image capture and processing for 3D images and XR free viewpoints. 
Biometric for IDaaS is an important aspect of CPS security. If online games are associated with metaverse, it may be a component 
of CPS. As these CPS applications increase, the number of dedicated chips will increase. There are various requirements for the 
number of dedicated accelerators for the edge, and the rate of increase is larger than that for the cloud. Dedicated devices for the 
edge can be classified as 10 mW or less (IoTe) and 100 mW to 10 W or less (personal augmentation and ADAS) from the 
viewpoint of power consumption. The growth rate of the latter is larger than that of the former. 

The number of dedicated devices for meeting non-functional requirements such as security is also important. Security is achieved 
by a combination of various technologies from camera authentication to biometric authentication. In addition to speeding up and 
improving image recognition and detection, security chips are required to have functions for visualizing results and obtaining 
customer satisfaction. 

6.4. METRICS FOR CPS PROCESSORS 
Key metrics include the number of devices on the bus and number of CPUs per device. 

Table SA-11    Cyber-physical Systems Technology Requirements 
 

 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 

Number of devices 64 128 128 128 128 256 256 256 512 512 512 512 512 

CPUs per device 8 8 8 12 12 12 12 16 16 16 16 16 16 
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7.  CONCLUSIONS AND RECOMMENDATIONS 
Significant focus, this year, has been placed upon Supply Chain. Whilst the industry as a whole has arguably the best supply 
chain processes of any, it is clear that a series of unanticipated global events have caused significant problems, with ramifications 
that have impacted all industries downstream. It would be unwise to view this experience as a transient event followed by a return 
to business as usual, however. As we move further into the ‘vertical’ phase of Moore’s law growth, rapidly increasing change 
and volatility are to be fully expected, with the associated socio-political change that new technologies always bring. 
Consideration should be given to volatility as a regular and ongoing problem. 

A large part of this change will be driven by the move to AI-based decision-making as a path to increased scale, bypassing the 
limits of conventional business structures. The challenges surrounding the ownership and control of the data necessary to train 
these models will likely outweigh the technical challenges in implementing the systems themselves, so thought is necessary to 
resolve the commercial concerns in this space. 

Personal augmentation systems have emerged globally as a new driver for consumer technology, with uptake progressing beyond 
the original communications functions of mobile phones to encompass a wide range of enhancements to human capabilities, 
including augmented reality, the extension of vision into infrared, the provision of accurate contactless temperature and distance 
measurement, 3D scanning, sensing of multiple health parameters, fall detection and alerting etc. Provision of secure financial 
transactions continues as an important emerging application for personal augmentation systems. 

The self-similar patterns of security and confidentiality can be seen to repeat at all scales from the smallest of IoT devices to the 
interactions that flow through our supply chain itself. A consistent and reliable approach to these aspects universally will unlock 
value in many areas. 

As Cyber-physical systems continue to proliferate in scenarios where they are required to control physical systems, the reliability 
of these systems will increasingly fall into the purview of government regulation. As this regulation is currently being driven by 
demands very different from the concerns of the industry, attention should be given to ensuring that incompatible regulation does 
not become problematic for some markets. 

We have identified several recommendations, as follows: 

• Holistic security and privacy remain critical to all our system areas — this drives ongoing requirements for features and 
services back through the supply chain to provide provenance and provable attestation from end user back to system 
manufacturing, semiconductor fabrication, and original design engineering.  

• Safely unlocking the data necessary to train AI solutions within the industry is a commercial challenge that conflicts 
with our existing approaches to protecting IP and new thinking will be required in order to realize the value promised 
by CPS and anti-fragile supply chain. 

• AI/ML, IoT and CPS all present drivers for massive increases in data flow from edge to cloud. As this grows, the 
problems of information transfer bottlenecks within systems will transition from the HPC domain down through all the 
design envelopes. Utilizing the performance available in new devices will become harder as increasingly complex 
software approaches are necessary to face these challenges so it will be necessary to disseminate appropriate knowledge 
and tooling to allow customers to take advantage of these capabilities. 

• Ownership of production AI/ML/CPS systems introduces new challenges and so consideration, and ongoing 
development of best known methods in MLOps is an area for further pre-competitive collaboration that will lift all 
boats. 

• Energy harvesting is a key technology to enable the growth of IoT edge devices. Continued work is required. 

• Augmented reality will create further demand for computation, communication, sensing, and display on personal 
augmentation devices and will be a class of applications which will span ad hoc low latency personal device to personal 
device and personal device to edge infrastructure. 
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