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APPLICATIONS BENCHMARKING 

1 CHARTER AND MISSION 
The Applications Benchmarking1 (AB) International Focus Team’s (IFT) mission is to identify key application drivers, 
track and roadmap the performance of these applications for the next 15 years.  Given a list of market drivers from the 
Systems and Architectures Focus Team, AB generates a cross matrix map showing what application(s) are important or 
critical (gating) for each market.  

2 SCOPE 
The scope of AB is all application domains of interest to the users of computing devices across all market drivers.  

3 CROSS TEAM INTERACTIONS 
The AB IFT provides a list of applications drivers (application areas) and their anticipated performance trends to the 
Systems and Architectures (SA) International Focus Team.  The AB IFT receives a list of market drivers from the SA 
IFT.  AB IFT then generates a Cross Matrix that shows which application areas are important or critical to a given market 
driver. 

4 STAKEHOLDERS 
Stakeholders for the AB IFT include all users of computing devices.  The AB IFT is the voice of these users for the IRDS.  
All system vendors across all market drivers are also stakeholders in AB IFT as these vendors seek to respond to their 
customers. 

5 TECHNOLOGY STATUS, NEW REQUIREMENTS AND POTENTIAL 

SOLUTIONS 

5.1 TECHNOLOGY STATUS AND UPDATE  
The AB IFT is new to IRDS.  Thus this document outlines its status but does not provide an update from the ITRS 2.0 
roadmap.  The Applications Areas identified by the AB IFT are shown below in Table 1. 

                                                           
1 Note that in the computer industry, as opposed to the larger semiconductor industry, “benchmarking” refers to using test programs 
that serve as proxies for user applications in order to estimate the performance of a computer system on a given application domain. 
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Table 1 Application Areas 

Application area Desired metric Description 

Big Data Analytics Feature/sec 
Data mining to identify nodes in a large graph that satisfy a given 
feature/features 

Feature 
Recognition Feature/sec 

Graphical dynamic moving image (movie) recognition of a class of targets 
(e.g., face, car).  This can include neuromorphic / deep learning approaches 
such as DNNs 

Discrete Event 
Simulation Sim/sec 

Large discrete event simulation of a discretized-time system.  (e.g., large 
computer system simulation) Generally used to model engineered systems. 
Computation is integer-based. 

Physical system 
simulation Sim/sec 

Simulation of physical real-world phenomena.  Typically finite-element 
based.  Examples include fluid flow, weather prediction, thermo-evolution. 
Computation is floating-point-based. 

Optimization Solution/sec Integer NP-hard optimization problems 

Graphics/VR/AR Frame/sec 

Large scale, real-time photorealistic rendering driven by physical world 
models.  Examples  include interactive gaming, Augmented Reality, Virtual 
Reality. 

Media processing Frame/sec 

Discrete processing, including filtering, compressing, decompressing of 
streaming media, where the media is unknown (i.e., camera stream based).  
Includes integrating multiple cameras to feed graphics rendering 

Cryptographic 
codec Codon/sec 

Crypting and decrypting of data at the edge of cryptographic science.  
Includes asymmetric-key encryption, excludes symmetric-key encryption. 

 

5.2 REQUIREMENTS AND DIFFICULT CHALLENGES 
 

1. Benchmark Availability: There are several benchmark sets available that cover each application area.  
However, many of these benchmarks either only cover a portion of an application area or cover more than one 
application area.   

2. Benchmark Results Availability: In order for benchmarks to be useful for projecting a trend in performance vs. 
time, there must be a sufficiently-long history of benchmark scores.  At a minimum, AB IFT believes at least 4 
years prior to the current day of scores should be available.   

3. Metrics to Track: The metrics to track listed in Table 1 are not easily derived from all benchmark scores. 

4. Metrics vs. Precision and Accuracy: For some application areas (e.g., Feature Recognition, Optimization), the 
precision of the result is a parameter for the benchmark performance (i.e., recognizing 81% of faces vs. 85% of 
faces).  Related to this is the accuracy of the result is often also parameterized (i.e., finding a near optimal result 
that is within 5% of the optimal result). 

5. Power/Energy Scoring: With a few exceptions, the majority of available benchmarks track metrics that are 
disconnected from power dissipation and total energy consumption. 

5.3 POTENTIAL SOLUTIONS 
1. Benchmark Availability: Over time, the plan is for AB IFT will develop new benchmark sets that more 

appropriately measure the desired application areas identified by AB IFT. 
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2. Benchmark Results Availability: Once AB IFT-designed benchmarks are made available, members of IRDS 
AB and their employers will control the availability of results. 

3. Metrics to Track: For today, the AB IFT must use whatever metrics were collected.  Once AB-IFT benchmarks 
are made available, these benchmarks will be designed to capture the desired metrics. 

4. Metrics vs. Precision and Accuracy: Currently, AB IFT will use benchmark results that are consistent in their 
accuracy and precision specifications.  

5. Power/Energy Scoring: AB IFT will use a platform form factor (e.g., mobile phones, server blades, etc.) as a 
proxy for power/energy efficiency.  More desirable, but infeasible at this time, is to use the IEEE RCI Low 
Power Image Recognition Competition approach (http://rebootingcomputing.ieee.org/lpirc).  

 

5.4 APPLICATION AREA:  “BIG DATA ANALYTICS”  
The Big Data Analytics application area focuses on Data mining to identify nodes in a large graph that satisfy a given 
feature/features. 

 

Potential Public Benchmarks 

 

Graph 500 

The Graph 500 benchmark (http://www.graph500.org/specifications) contains two kernels accessing a single data 
structure representing a weighted, undirected graph. The first kernel constructs the graph from the input tuple list; the 
second one operates on the graph. The first kernel constructs an undirected graph in a format usable by the subsequent 
kernel. No subsequent modifications are permitted to benefit specific kernels. The second kernel performs a breadth-first 
search of the graph. Both kernels are timed. 

 

Kernel 1: Graph Construction: 

The first kernel transforms an edge list to any data structures (held in internal or external memory) that are used for the 
remaining kernels. For instance, kernel 1 may construct a (sparse) graph from a list of tuples; each tuple contains endpoint 
vertex identifiers for an edge, and a weight that represents data assigned to the edge. There are various internal memory 
representations for sparse graphs, including (but not limited to) sparse matrices and (multi-level) linked lists. 

 

Kernel 2: Breadth-first Search: 

A Breadth-First Search (BFS) of a graph starts with a single source vertex, then, in phases, finds and labels its neighbors, 
then the neighbors of its neighbors, etc. This is a fundamental method on which many graph algorithms are based. They 
do not constrain the choice of BFS algorithm itself, as long as it produces a correct BFS tree as output. This benchmark's 
memory access pattern (internal or external) is data-dependent with small average prefetch depth. As in a simple 
concurrent linked-list traversal benchmark, performance reflects an architecture's throughput when executing concurrent 
threads, each of low memory concurrency and high memory reference density. Unlike such a benchmark, this one also 
measures resilience to hot-spotting when many of the memory references are to the same location; efficiency when every 
thread's execution path depends on the asynchronous side-effects of others; and the ability to dynamically load balance 
unpredictably sized work units. The benchmark has 64 BFS searches from different sources executed in sequence. 

 

Problem Sizes: 

Problem class Scale Approx. storage size in TB 

Toy (level 10) 26 0.0172 

Mini (level 11) 29 0.1374 
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Small (level 12) 32 1.0995 

Medium (level 13) 36 17.5922 

Large (level 14) 39 140.7375 

Huge (level 15) 42 1125.8999 

Performance Metrics 

For Kernel 2, they define a new rate called traversed edges per second (TEPS) as follows. Let timeK2(n) be the measured 
execution time for kernel 2. Let m be the number of input edge tuples within the component traversed by the search, 
counting any multiple edges and self-loops. They define the normalized performance rate (number of edge traversals per 
second) as: 

 

TEPS(n) = m / timeK2(n) 

 

Output results: 

 The output must contain the following information (among others): 

 SCALE: Graph generation parameter 

 Construction_time: The single kernel 1 time 

 min_time, firstquartile_time, median_time, thirdquartile_time, max_time: Quartiles for the kernel 2 times 

 mean_time, stddev_time: Mean and standard deviation of the kernel 2 times 

 

RESULTS 

Figure 1 plots the number of GTEPS of the top three machines in the last 

6 years. The data is refreshed every 6 months. Nearly all of these runs are with the “Large” problem size. 
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Figure 2 plots the number of cores used in the top three Graph 500 machines in the last 

6 years.  

 
PARSEC 

Parsec (http://parsec.cs.princeton.edu) has a variety of parallel applications. We are interested in two datamining 
applications: 

1. Freqmine: This application employs an array-based version of the FP-growth (Frequent Pattern-growth) method 
for Frequent Itemset Mining (FIMI). It is an Intel RMS benchmark which was originally developed by 
Concordia University.  

2. Streamcluster: This RMS kernel solves the online clustering problem. For a stream of input points, it finds a 
predetermined number of medians so that each point is assigned to its nearest center. 

There is no execution time available anywhere. 

 

BigDataBench 

BigDataBench (http://prof.ict.ac.cn/) is a suite of big data applications. There are two applications that use graphs and 
have good data sets: 

 

1. Google Web Graph 2 — This data set is unstructured, containing 875713 nodes representing web pages and 
5105039 edges representing the links between web pages. This data set is released by Google as a part of Google 
Programming Contest. 

2. Facebook Social Network3 — 4039 nodes, 88234 edges (unstructured graph) 

There is also no data on execution time of these applications. 

 

5.5 APPLICATION AREA:  “FEATURE RECOGNITION” 
The application area of “Feature Recognition” refers to both the use and the training of Deep Neural Networks (DNNs), 
as well as any other systems that derive their performance characteristics by learning over large sets of datas.  The goal of 
these benchmarks is to track progress in this field to enable continued evolutionary improvement of existing 
computational approaches (e.g., CPUs and GPUs), as well as to provide an accurate performance target for more 

                                                           
2 Google web graph. http://snap.stanford.edu/data/web-Google.html . 
3 Facebook graph. http://snap.stanford.edu/data/egonets-Facebook.html  
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revolutionary approaches (approximate computing approaches based either on digital techniques, on analog memory 
devices, or other approaches). 

For this application area, we plan to track two sets of benchmarks: 

1. Forward-evaluation of already trained DNNs.  Because much of this computation might take place in mobile or 
other power-constrained platforms, these metrics should include both classifications-per-second and 
classifications-per-second-per-Watt. Our challenge here is how to accurately distinguish performance and 
efficiency improvements that stem from improvements in the underlying hardware from improvements due to 
algorithmic improvements (like weight pruning, compression, and reduced precision), yet mandate an acceptable 
classification accuracy.  Non-hardware based improvements are of course eagerly welcomed, but the significant 
presence of such improvements can make accurate benchmarking considerably more challenging. 

2. Training of the weights (and any other adjustable parameters) for DNNs.  Metrics here are time-to-complete-
training for a given accuracy, as well as time-and-energy-to-complete-training. 

 

Here we list some of the challenges for this application area: 

1. It is common practice to consider DNNs to be “fully trained” despite the fact that the classification accuracies on 
previously unseen examples (e.g., generalization accuracy) will remain well below 100%.  Thus it can be 
difficult to define the “completion” of training. 

2. No quantitative metric for accuracy on any given dataset will remain relevant for very long, due to the rapid and 
continued evolution of the DNN field.  However, achieving an “expected” accuracy will only become more 
important in the future, since emerging approaches for speeding up both the forward-evaluation and the training 
of DNN involve approximations: either reduced-precision (all the way down to 1-2 bit weights to reduce 
memory footprint for forward evaluate), weight pruning and compression, analog techniques. 

3. There are numerous ways in which time-per-feature or time-to-complete-training can improve, which 
complicates benchmarking considerably.  For example, changes in software framework can change the time-per-
training-example on the same hardware by a factor of 20x <https://github.com/soumith/convnet-benchmarks>. 
As a result, benchmark numbers for two different hardware platforms can differ because the underlying 
hardware is different, or because the software frameworks used were different. 

4. While there are some emerging benchmarks that focus on essential component blocks of DNN systems (see 
https://svail.github.io/DeepBench/, it is not clear that a benchmarking approach focused solely on component 
blocks could accurately track full forward-evaluation or training times, nor how such an approach would provide 
reassurance that an approximate digital or analog technique was achieving effectively identical classification 
accuracies. 

 

Potential Public Benchmarks 

The approach we propose here is to benchmark one “well-known” example network for each of the different types of 
networks expected to be a future importance.  These would include Convolutional Neural Networks (CNN) for image 
processing, Fully-Connected Deep Neural Networks (FC-DNN) for audio/speech processing, Long Short Term Memory 
(LSTM) for natural language processing, and other candidates as needed.  

Since each example is well-known and defined (in terms of number of layers, number of neurons and synapses, the add-
ons such as dropout and momentum that were used when the network was first published), we can specify that any 
alternative approach (pruning weights, reduced precision, analog approaches, etc.) must achieve a classification accuracy 
that is within the run-to-run standard deviation of a conventional implementation of the full network.  This then provides 
an accuracy target, at which the time-for-training, time-and-energy-for-training, time-for-classifying-an-example, and 
time-and-power-for-classifying-an-example could each be quantified. 

For convolutional networks, existing data on time-for-training can be used from < https://github.com/jcjohnson/cnn-
benchmarks>.  Despite the fact that AlexNet is well-known and comparatively small in size, we choose to avoid this 
network because of its use of normalization within the network layers.  Normalization can consume considerable 
computational resources, yet is not a component needed or used in later CNN networks.  Thus we choose to track VGG-
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16 < https://github.com/jcjohnson/cnn-benchmarks#vgg-16, https://github.com/jcjohnson/cnn-benchmarks#vgg-paper, 
https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md >, showing results for the same cuDNN 
software framework for an input of size 16 x 3 x 224 x 224 (e.g., 16 examples per minibatch). Note that power 
information was not included in the posted information.  It is not clear if we can estimate power from the power 
specifications of the underlying hardware, unless we know “how much” of the GPU’s capabilities (IO bandwidth, 
compute capabilities) were needed for the benchmark.  It is quite likely that the maximum power is not required unless 
the network in question used all of the bandwidth AND all of the compute resources of the hardware. 

Also, it is not clear whether the forward-evaluation numbers shown here could be improved by pipelining or other 
techniques that only become feasible for a forward-evaluate-only implementation. (Note also that we will need to include 
here an accuracy target associated with this network, averaged over several different sets of random starting weights.) 

 

Table 2 Benchmarking results for the VGG-16 network 

GPU cuDNN Forward (ms) Backward (ms) Total (ms) 

Pascal Titan X 5.1.05 41.59 87.03 128.62 

GTX 1080 5.1.05 59.37 123.42 182.79 

Maxwell Titan X 5.1.05 62.30 130.48 192.78 

CPU: Dual Xeon E5-2630 v3 None 3101.76 5393.72 8495.48 

 

Similar data will be needed for one representative FC-DNN, one representative LSTM, and any other networks that 
should be considered.  For each representative network and its associated DNN dataset (see 
http://deeplearning.net/datasets/), a target accuracy will need to be defined and power (or total energy) accurately 
measured.  For runs on conventional GPU hardware, the software framework used should be fully identified (as it was in 
the data used to generate Table 1), to aid in comparing different measurements.   

5.6 APPLICATION AREA:  “DISCRETE EVENT SIMULATION”  
The discrete event simulation application area focuses on systems that are used to simulate other systems, typically via 
discrete-event methods. 

 

Potential Public Benchmarks 

1. 471.omnetpp from SPEC CPU2006: https://www.spec.org/cpu2006/Docs/471.omnetpp.html 

a. Description:  

i. The benchmark performs discrete event simulation of a large Ethernet network. The simulation 
is based on the OMNeT++ discrete event simulation system (www.omnetpp.org), a generic 
and open simulation framework. OMNeT++'s primary application area is the simulation of 
communication networks, but its generic and flexible architecture allows for its use in other 
areas such as the simulation of IT systems, queueing networks, hardware architectures or 
business processes as well. The Ethernet model used in this benchmark is publicly available 
from the address given in the References. 

ii. For the reference workload, the simulated network models a large Ethernet campus backbone, 
with several smaller LANs of various sizes hanging off each backbone switch. The model 
contains altogether about 8000 computers (hosts), and 900 switches and hubs. It mixes all 
kinds of Ethernet technology: Gigabit Ethernet, 100Mb full duplex, 100Mb half duplex, 10Mb 
UTP, 10Mb bus ("thin Ethernet"), switched hubs, repeating hubs. 

iii. The training workload models a smaller LAN with several hubs and busses. 
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iv. The model is accurate in the sense that the CSMA/CD protocol of Ethernet and the Ethernet 
frame are faithfully modelled. The host model contains a traffic generator which implements a 
generic request-response based protocol. (Higher layer protocols are not modelled in detail.) 
With appropriate configuration, the traffic generator can be tuned become a rough model for 
protocols such as SMB/CIFS (the Windows file sharing protocol), HTTP, or a database client-
server protocol. 

b. Large number of performance simulation should be available as part of SPEC 

2. DES benchmark (circuit simulation of netlists such as adders) from Galois suite: 
http://iss.ices.utexas.edu/?p=projects/galois/benchmarks/discrete_event_simulation 

a. Description 

i. The Discrete Event Simulation (DES) algorithm is commonly used to simulate systems of 
interacting stations, e.g., circuit simulation, units in a battle field, assembly line etc. The 
interacting objects in the system are modeled as stations, which store some state. During the 
course of simulation, the stations interact with each other via messages or events, and cause 
changes in their own state or the state of other stations. The changes are modeled as events 
being sent from a station to other stations. An event causes the target station to potentially 
update its state and generate new events destined for other stations in the system dependent 
upon this change. The system is represented as a graph where nodes are the stations and edges 
represent the communication links between the stations. Every event has a time stamp 
associated with it. The system evolves by processing the events in their time stamp order. The 
data parallelism in this algorithm arises from multiple events executing on different stations in 
the system. This benchmark uses Discrete Event Simulation to model logic circuit simulation. 
Here the processing stations are logic gates, which are interconnected with each other through 
wires (edges in the graph). The events in the system represent a change of value on the input or 
output of a gate. The simulation starts with some predefined initial events for the inputs of the 
circuit. Processing these initial events causes additional events to be generated in the system. 
When the input of a gate changes, it updates its output and generates new events to update the 
inputs of the gates in its fanout and so on. The simulation finishes when there are no 
unprocessed events. 

b. Performance 

i. Some performance available on website. 

5.7 APPLICATION AREA:  “PHYSICAL SYSTEM SIMULATION” 
The Physical System Simulation application area deals with simulation of physical, real-world phenomena.  These 
applications typically employ finite-element based techniques.  Examples include fluid flow, weather prediction, and 
thermo-evolution. In contrast to the Discrete Event Simulation application area, Physical System Simulation is dominated 
by floating-point-based computation. 

 

Potential Public Benchmarks 

Taking the application programmers and the end-users point of view, the following major benchmarking efforts could be 
considered – most of them with readily available code implementations: 

A. The NAS Parallel Benchmarks (NPB) [1] includes the descriptions of several (initially eight) “pencil and paper” 
algorithms [2]. All of them are realistically kernels although the authors claim that they include three "simulated 
applications" but this is 25 years ago. The NPB are flat (no hierarchy) and cover one application domain - CFD - of 
primary interest for NASA. 

B. The GENESIS Distributed-Memory Benchmarks [3] were developed in a 3-layer hierarchy – low-level micro-
benchmarks, kernels, and compact applications. This was supposed to express the performance of higher level codes by 
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the codes in the layer below. This proved to be a difficult task particularly with the compact application layer including 
various computational science codes. 

C. The PARKBENCH Public International Benchmarks for Parallel Computers [4]. This was an ambitious international 
effort to glue together the most popular parallel benchmarks at that time – NPB, GENESIS, and a few popular kernels 
including LINPACK. The PARKBENCH suite adopted the hierarchical approach from GENESIS together with the 
difficulties explained above. 

D. All major machine vendors have participated in the development of SPEComp2001. Achieving portability across all 
involved platforms was an important concern in the development process. The goal was to achieve functional portability 
as well as performance portability. Functional portability ensured that the makefiles and run tools worked properly on all 
systems and that the benchmarks ran and validated consistently. To achieve performance portability we accommodated 
several requests by individual participants to add small code modifications that take advantage of key features of their 
machines. 

E. Another more recent "pencil and paper" parallel benchmark suite is the Dwarfs Mine 
[http://view.eecs.berkeley.edu/wiki/Dwarf_Mine] based on the initial “Seven Dwarfs” proposal [5]. The Dwarfs 
(computation and communication patterns) are described as well-defined targets from algorithmic, software, and 
architecture standpoints. The number of Dwarfs (which are really kernels with some of them mapped to NAS PB) was 
then extended to 13 in the "View from Berkeley" TR [6]. The report confirms "presence" of the 13 Dwarfs in 6 broad 
application domains (pp. 16-19) – Embedded Computing, GP Computing, Machine Learning, Graphics/Games, 
Databases and Intel's RMS (recognition/mining/synthesis). 

The Dwarfs Mine description, which was followed by a reference implementation effort [7], adopts a bottom-up approach 
similar to GENESIS and then PARKBENCH although much more systematic. Some more recent studies suggest that 
more Dwarfs (kernels) should be added for other application domains while it is also not clear if the existing ones are 
actually sufficient for the 6 application domains described in the "View from Berkeley" TR. 

The currently proposed benchmark codes that cover the “Physical System Simulation” application area of interest adopts 
the bottom-up approach and come in a 2-layer hierarchy. At the lower layer, we are planning to use the “Seven Dwarfs” 
or kernels with some of them mapped to the NAS PB codes. The upper layer will include several compact representative 
application benchmarks in relevant areas such as climate modeling, plasma physics (fusion), and medical imaging. 
Repeatability of the benchmark results will be closely monitored with corresponding analysis and interpretation. First of 
all, we are aiming to select codes that conform to our repeatability requirements but we also recognize that in a number of 
cases repeatability properties depend heavily on the computer system and environment which requires more detailed 
consideration by the IRDS AB ITF. 

 

5.8 APPLICATION AREA:  “OPTIMIZATION”  
The optimization application area is generally large.  We narrow this area to integer-based problems and more specifically 
to problems that map to the well-known Traveling Salesman Problem (TST).  Of these approaches, there are two different 
categories: near-optimal techniques (also known as “heuristic techniques”), and (true) optimal techniques.  The former is 
dominated by two classes of algorithms: simulated annealing (SA) and genetic algorithms (GA).  Note that GA is actually 
a subclass of Evolutionary Algorithms (EA), however it is the most prominent member of EAs. 

For true optimal techniques, there are several algorithmic approaches such as dynamic programming (DP), integer linear 
programming (ILP) and branch-and-bound (BaB).  For TSP, each of these approaches can be shown to be NP-hard. 

 

Potential Public Benchmarks 

Near-optimal techniques: 

1. SPEC2k6: http://www.spec.org/cpu2006/Docs/429.mcf.html although this solves a vehicle scheduling problem and 
uses the (accurate, non-NP-hard) network simplex algorithm. 
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2. SPEC2k6: http://www.spec.org/cpu2006/Docs/473.astar.html, performs a heuristic (A* algorithm) routing of a 
path through a 2D graph. 

3. PARSEC: canneal is a cache-aware simulated annealing (SA) to minimize the routing cost of a chip design.  

 

True optimal techniques: 

4. TSPLIB: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ 

 

Available results from TSPLIB and more are here: http://plato.asu.edu/bench.html 

This tests different packages, thus is more of a codeless benchmark across algorithms and software implementations.  Not 
as useful as the SPEC2k6 benchmarks.  However, it appears to be the best choice to capture true optimization techniques.  
Benchmarks must be created from TSPLIB.  AB IFT then needs to run these benchmarks on a variety of platforms. 

 

5.9 APPLICATION AREA:  “GRAPHICS/VR/AR” 
The Graphics / Virtual Reality / Augmented Reality application area focuses on the challenging and market-defining 
problem of using high-performance graphics to create virtual environments or augment reality. 

The Media Processing application area focuses on processing of media streams, including compression, filtering, 
transformations and modulations.  This is also a critical application area that important in markets such as mobile and 
internet-of-things edge devices. 

For both of these application domains, benchmarks exist but are focused on specific markets.  We seek to define a small 
set of benchmarks that capture these two areas with more generality. 

 

5.10 APPLICATION AREA:  “CRYPTOGRAPHIC CODEC”  
The cryptographic codec application area is critical to many emerging and existing markets.   

There are two sub-areas in this application area: primitives to do hashing or do an encryption scheme, and full system 
(e.g., TLS). 

 

Potential Benchmarks 

EEMBC is creating a benchmark for this space.  Their approach is to have benchmarks which will change based on 
platform.  Application spaces include authentication, secure data storage, secure data communications. If we choose to 
adopt this, we need to focus on common elements for IRDS AB. 

A key question is, “how do you account for the presence of acceleration in hardware for encryption?”  There is no API 
that’s standardized across these platforms.  One potential solution is to use the Android API for security for mobile (note 
however that that doesn’t work for IoT) EEMBC has some security experts working on this issue.  We will continue to 
monitor their progress. 

Standards organizations in this space include the IoT Security Foundation, IPSO, etc.  Also NIST is making hard 
requirements and even has a conference dedicated to this: https://www.nist.gov/news-events/events/2016/10/lightweight-
cryptography-workshop-2016.  

 

There are few talks that directly relate to the issues with this applications domain: 

https://www.nist.gov/sites/default/files/documents/2016/10/17/sonmez-turan-presentation-lwc2016.pdf 

https://www.nist.gov/sites/default/files/documents/2016/10/17/schaumont-presentation-lwc2016.pdf  

 

Cryptolux is another potential source for benchmarks (https://www.cryptolux.org/index.php/FELICS). 
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6 CROSS MATRIX 
The function of the Cross Matrix is to map application areas to SA-IFT-defined market drivers. In the May, 2016 meeting 
in Leuven, Belgium, the initial market drivers were determined.  In the December, 2016 IRDS meeting, the final market 
drivers for the 2017 Roadmap were decided on.  These are: 

 

 Internet-of-Things edge devices (IoT-e):  IoT is a broad class if computing applications spanning the server to 
the ultimate sensors and actuators.  This market driver focuses on the latter: embedded systems for sensing and 
actuating, often with tight power constraints. 

 Cloud computing (CC): This category is for server devices deployed in data centers.  This market driver 
includes both devices designed for accelerating search and for devices designed for high-performance computing 
(HPC) applications.  

 Cyber-Physical Systems (CPS): computer-based control of physical devices characterized by real-time 
processing and used primarily in industrial control.  [Germany has an initiative called "Industry 4.0" that, among 
other things, discusses this interpretation of CPS.] 

 Mobile (Mo): This category is focused on mobile devices generally, and smartphone devices in particular.  

 

 

Below is the preliminary cross matrix that was developed, where “G” means critical (or “gating”) application area(s), “X” 
means important application area(s), and “P” means important and power-constrained application area(s).  These three 
classifications remain open to debate in the AB IFT. 

Application Area IoT-e CC CPS Mo 

Big Data Analytics P X   
Feature Recognition X X P P 

Discrete Event Simulation  X   
Physical system simulation  X   
Optimization  X P  
Graphics/VR/AR  X  P 

Media processing X X P G 

Cryptographic codec G, P X G. P G, P 

 

7 SUMMARY  
The Applications Benchmarking (AB) International Focus Team’s mission is to identify key application drivers, track and 
roadmap the performance of these applications.  We identify 11 application areas that span a broad range of computation.  
Given a list of market drivers from the Systems and Architectures FT, AB generates a cross matrix map showing what 
application(s) are important or critical (gating) for each market.  The current cross matrix has four area: IoT-e, CC CPS 
and Mo.  Together these represent key markets important to the overall electronics industry. 
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APPENDIX: COMMON BENCHMARK SUITES 

SPEC CPU 2006 
Source: https://www.spec.org/cpu2006/publications/CPU2006benchmarks.pdf 

Integer: 

 400.perlbench: (programming language) 

 401.bzip2: (Compression) 

 403.gcc: (C Language optimizing compiler) 

 429.mcf: Combinatorial optimization / Single-depot vehicle scheduling 

 445.gobmk: Artificial intelligence - game playing 

 456.hmmer: Search a gene sequence database 

 458.sjeng: Artificial Intelligence (game tree search & pattern recognition) 

 462.libquantum: Physics / Quantum Computing 

 464.h264ref: Video compression 

 471.omnetpp: Discrete Event Simulation 

 473.astar: Computer games, Artificial Intelligence. Path finding 

 483.xalancbmk: XSLT processor for transforming XML documents into HTML, text, or other XML document 
types 

Floating point 

 410.bwaves: Computation Fluid Dynamics 

 416.gamess: Quantum chemical computations 

 433.milc: Physics / Quantum Chromodynamics 

 434.zeusmp: Physics / Magnetohydrodynamics 

 435.gromacs: Chemistry / Molecular Dynamics 

 436.cactusADM: Physics / General Relativity 

 437.leslie3d: Computational Fluid Dynamics (CFD) 

 444.namd: Scientific, Structural biology, classical molecular dynamics simulation 

 447.dealII: Solution of Partial Differential Equations using the Adaptive Finite Element Method 

 450.soplex: Simplex Linear Program (LP) Solver 

 453.povray: Computer visualization (ray-tracing) 

 454.calculix: Structural Mechanics 

 459.GemsFDTD: Computational Electromagnetics (CEM) 

 465.tonto: Quantum Crystallography 

 470.lbm: Computational Fluid Dynamics, Lattice Boltzmann Method 

 481.wrf: Weather Forecasting 

 482.sphinx3: Speech Recognition 
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PARSEC 
Source: http://parsec.cs.princeton.edu/doc/parsec-report.pdf 

 blackscholes: (Financial Analysis) calculates the prices for a portfolio of European options analytically with the 
Black-Scholes partial differential equation (PDE) 

 bodytrack: (Computer Vision) tracks a 3D pose of a marker-less human body with multiple cameras through an 
image sequence. 

 canneal: (Engineering) cache-aware simulated annealing (SA) to minimize the routing cost of a chip design 

 dedup: (Enterprise Storage) compresses a data stream with a combination of global compression and local 
compression in order to achieve high compression ratios. (deduplication) 

 facesim: (Animation) it takes a model of a human face and a time sequence of muscle activations and computes a 
visually realistic animation of the modeled face by simulating the underlying physics. 

 ferret: (Similarity Search) content-based similarity search of feature-rich data such as audio, images, video, 3D 
shapes and so on. 

 fluidanimate: (Animation) extension of the Smoothed Particle Hydrodynamics (SPH) method to simulate an 
incompressible fluid for interactive animation purposes 

 freqmine: (Data Mining)  array-based version of the FP-growth (Frequent Pattern-growth) method for Frequent 
Itemset Mining (FIMI) 

 streamcluster: (Data Mining) solve the online clustering problem. For a stream of input points, it finds a 
predetermined number of medians so that each point is assigned to its nearest center. 

 swaptions: (Financial Analysis) uses the Heath-Jarrow-Morton (HJM) framework to price of portfolio of 
swaptions. 

 vips: (Media Processing) based on the VASARI Image Processing System (VIPS). Includes fundamental image 
operations such as an affine transformation and a convolution. 

 x264: (Media Processing) H.264/AVC (Advanced Video Coding) video encoder. 

 




